The ACWWA Wastewater Guidelines Draft 2, March 2020, has been forwarded to the Project Committee for review. The document is still very much in draft form, and is being made available for stakeholder review and input. Please note the following:

1. Highlighted sections are to be discussed with the Project Committee.
2. As per the Water Supply Guidelines, Chapter 2 Climate Change is a new chapter and introduces the topic to the industry. The chapter includes significant narrative to illustrate context, and the format is not finalized. An option to be discussed with the Project Committee is that the Climate Change chapter may be broken up into a chapter and an appendix.
3. Definitions for average, maximum, and peak day flows, etc. are provided in several chapters. Final definitions, and location of the terms, will be provided in consultation with the Project Committee.
4. Use of “wastewater” vs “sewage” will be discussed with the Project Committee, as will the terms sanitary, domestic, household.... wastewater/sewage.
5. Table 3.1 Design Flows will be discussed with the Project Committee. Please advise if you have encountered any issues, or have any concerns, with specific figures listed in the table.
6. The use of “1 in n” return events and references to consideration of climate change/impacts are highlighted as they require discussions with the Project Committee (as per the Water Supply Guidelines).
7. Sections dealing with pipe installations (3.5), Testing and Inspections (3.10), and FM Testing (4.6), and a few others, need to be discussed to determine if they belong in a design guideline.
8. Two of the Appendices have not been edited and will follow.
9. Some cross references to sections are highlighted as they are not completed.

Please contact the undersigned if you have any comments or questions on the Draft.

A “markup” PDF copy of the Draft is available on request should a stakeholder wish to review the edits to the 2006 document. Please provide comments by August 28, 2020.

Willard D’Eon, MPH, P.Eng. | Process Engineer

c. 902-499-0159 | willardd@cbcl.ca
Purpose and Use of Guidelines

Purpose

The purpose of the Atlantic Canada Wastewater Systems Guidelines is to provide a guide for the development of wastewater projects in Atlantic Canada. The guideline is an update of the Atlantic Canada Wastewater Guidelines Manual for Collection, Treatment, and Disposal (2006). The update includes revisions to technical requirements and a chapter on the consideration of climate change for the design of climate resilient infrastructure. A companion Guidelines, the Atlantic Canada Water Supply Guidelines, was updated simultaneously.

The document should be considered to be a companion to the Atlantic Canada Water Supply Guidelines (2020).

The document is intended to serve as a guide in the evaluation of sanitary wastewater systems, and for the design and preparation of plans and specifications for projects. The document will suggest limiting values for items upon which an evaluation of such plans and specifications may be made by the regulator, and will establish, as far is practical, a best practice.

THIS MANUAL DOES NOT ELIMINATE THE NECESSITY FOR DETAILED DESIGN. ENGINEERS WHO USE THIS MANUAL IN PREPARING REPORTS, DESIGN DRAWINGS, AND SPECIFICATIONS MUST RECOGNIZE THAT HE/SHE RETAINS FULL RESPONSIBILITY FOR THEIR WORK.

Funding

Funding for the updates to the Guidelines was provided by Natural Resources Canada under the Building Regional Adaptation Capacity and Expertise (BRACE) program, a five-year (2017-2022), $18 million initiative under the Adaptation and Climate Resilience pillar of the Pan-Canadian Framework on Clean Growth and Climate Change. The purpose of the program is to increase the ability of communities, organizations, small and medium-sized enterprises and practitioners to access, use, and apply knowledge and tools on climate change adaptation in their work.

Funding from NRCan matched financial and/or in-kind contributions from the provinces of Newfoundland and Labrador, New Brunswick, Nova Scotia, and Prince Edward Island, the City of Charlottetown, Halifax Water, and from the Atlantic Canada Water and Wastewater Association (ACWWA).

The Project Committee included representatives from the above as follows:

- ACWWA Executive Director: Clara Shea
- New Brunswick: Sylvie Morton, P.Eng.
- Newfoundland and Labrador: Deneen Sprackling, P.Eng.
- Prince Edward Island: Morley Foy, P.Eng

The guidance and assistance from the above and their peers is acknowledged and greatly appreciated.
Climate Change

Understanding climate change and its impacts on wastewater (and water supply) infrastructure is an important and complex reality for utilities in Atlantic Canada. Utilities are anticipated to encounter both challenges and opportunities related to addressing the impacts of projected future climate change. It is anticipated that impacts from climate change will vary widely across Atlantic Canada due to the size and diversity of the region. There are significant regional economic and demographic differences, where every utility has its own unique set of priorities and finite resources. As such, when one combines these factors, it becomes evident that each region within Atlantic Canada will be impacted by climate change differently.

Given regional differences in Atlantic Canada, there is limited value in presenting detailed site-specific climate change parameters, indices, and adaption design processes in this guideline. Instead, this guideline aims to build the capacity of utilities and designers seeking to incorporate climate change information and adaptation strategies within infrastructure planning, design and operations; using accessible climate science resources and methods which are both reputable and reliable. This guideline document will focus on climate change adaptation instead of climate change mitigation. Where possible, the guideline will identify opportunities to reduce energy consumption and demand in wastewater operations to limit human-induced greenhouse gas emissions.

The guidelines serves as a foundational introduction to climate change adaptation for wastewater utilities in Atlantic Canada and will highlight the linkages between changing climate and the planning, design and operations of infrastructure managed by water and wastewater utilities. A new introductory Climate Change chapter aims to deliver a comprehensive overview for the strategies available to gather climate change information, assess impacts and risks, and to implement effective adaptation planning. Throughout the guideline, reference will be made to climate change impacts, and what to consider in a climate change context when outlining the steps for planning, designing and operating a wastewater facility.

Limitations

Users of the Manual are advised that requirements for specific issues such as treatment processes, equipment redundancy, disinfection, and treated effluent are not uniform among the Atlantic Canada provinces, and that the appropriate regulator should be contacted prior to, or during, an investigation to discuss specific key requirements.

Approval Process

This Guideline has been prepared for use in the design of infrastructure for wastewater systems in Atlantic Canada. Every effort has been made to ensure that the manual is consistent with current technology and environmental considerations. The approval and permit process outlined in these guidelines is general in nature and is meant to be an overview only. Proponents are advised to familiarize themselves with the requirements of all legislation and policies dealing with wastewater projects in the province where the work is to be undertaken.

The respective provincial legislation, standards, guidelines, policies, etc., and/or contacts may be accessed as follows:

- New Brunswick Environment and Local Government.
- Newfoundland and Labrador Municipal Affairs and Environment.
- Nova Scotia Department of Environment.
Innovation
The Wastewater Systems Guidelines are not intended to limit innovation on the part of proponents. Where the designer can show that alternate approaches can produce the desirable results, such approaches may be considered for approval.

Definition of Terms
The terms used in the Guidelines reflect generally used definitions in the wastewater industry.

Policy/Position Papers
There are a wide range of issues which must be dealt with in the upgrading of existing wastewater collection and treatment systems or the implementation of new systems. Not all of these issues are easily categorized and addressed as a guideline. In some cases, technical aspects of the issues are still emerging, while others may require greater discussion regarding the context in which they may be used or dealt with.

WEF and the Canadian Water and Wastewater Association (CWWA) have developed policy/position papers that reflect the current state of knowledge, experience and best practices on a variety of topics. Users of the Manual are encouraged to review WEF and CWWA policy/position papers at the following:
- WEF: http://www.wef.org
- CWWA: http://www.cwwa.ca

Reference Material
In developing the Manual, material from outside sources was reviewed, and guidelines appropriate for conditions in Atlantic Canada were adopted. In some cases, multiple sources are referenced in the Manual, pending responses from the industry

List of references has not been edited.

Conflicts
Conflicting statements may have survived the review process. Should conflicting statements be found, readers are directed to contact the regulator for the appropriate jurisdiction for clarification.

Comments
Comments on the Wastewater Systems Guidelines should be forwarded to the following:

???
Contents

Chapter 1 Approval Requirements & Procedures ... 1
 1.1 General Overview ... 1
 1.2 Pre-Consultation ... 3
 1.3 Pre-Design (Technical) Report ... 3
 1.4 Detailed Design Submission ... 12
 1.5 Revisions to Approved Plans .. 18
 1.6 Certificates of Approval ... 18
 1.7 Operation During Construction ... 18
 1.8 Operating Requirements ... 18
 1.9 Monitoring Requirements ... 19
 1.10 Compliance Requirements ... 19
 1.11 Reporting Requirements ... 19

Chapter 2 Incorporating Climate Change in the Design of Wastewater Infrastructure................................. 20
 2.1 Introduction to Climate Change Adaptation in this Guidelines ... 20
 2.2 Scope of Climate Change Adaptation in this Guideline ... 21
 2.3 Climate Change Projections for use by Practitioners .. 21
 2.4 Global and National Climate Change Trends .. 25
 2.5 Projected Climate Change in Atlantic Canada ... 27
 2.6 Climate Change Impacts on Wastewater Infrastructure Design ... 31
 2.7 Assessing Climate Change Impacts on Wastewater Infrastructure – CSA 34
 2.8 Identifying Climate Risks to Wastewater Infrastructure ... 35
 2.9 Adaptation to Climate Change in Wastewater Infrastructure ... 41
 2.10 Key Climate Change Indices and Parameters for Consideration .. 42
 2.11 Sources of Climate Data .. 43
 2.12 References .. 46

Chapter 3 Design of Wastewater Sewers .. 50
 3.1 Type of Wastewater Collection Systems ... 50
 3.2 Design Capacity Considerations ... 50
 3.3 Hydraulic Design ... 50
 3.4 Details of Design and Construction ... 59
 3.5 Installation Does this belong in a Design Guideline? ... 62
 3.6 Sewer Rehabilitation Methods ... 64
 3.7 Inflow Control ... 65
12.1 General ... 246
12.2 Sludge Treatment Process Selection .. 248
12.3 Sludge Conditioning ... 248
12.4 Sludge Thickening .. 251
12.5 Sludge Dewatering ... 257
12.6 Sludge Pumps and Piping ... 266
12.7 Sludge Stabilization .. 269
12.8 Advanced Treatment Alternatives for Pathogen Reduction .. 283
12.9 Sludge Recycling and Disposal Methods .. 286

Appendices

A Workforce
B Treatment Process Control
C Operations and Maintenance Manuals
D Sludge Utilization on Land not edited
E References not edited
Chapter 1 Approval Requirements & Procedures

1.1 General Overview

1.1.1 Summary of Approval Process

1.2 Pre-Consultation

1.3 Pre-Design (Technical) Report

1.3.1 Contents of a Pre-Design Report

1.3.2 Concept and Guidance for Plans and Specifications

1.3.3 Format for Content and Presentation

1.3.3.1 Title

1.3.3.2 Letter of Transmittal

1.3.3.3 Title Page

1.3.3.4 Table of Contents

1.3.3.5 Summary

1.3.3.6 Findings

1.3.3.7 Conclusions

1.3.3.7.1 Recommendations

1.3.3.8 Introduction

1.3.3.9 Background

1.3.3.9.1 General

1.3.3.9.2 Economic

1.3.3.9.3 Regulations

1.3.3.10 Hydraulic Capacity

1.3.3.11 Investigate Considerations – Existing Facilities Evaluation

1.3.3.11.1 Existing Collection System

1.3.3.11.2 Existing Treatment Plant

1.3.3.11.3 Existing Process Facilities

1.3.3.11.4 Existing Wastewater Characteristics

1.3.3.12 Proposed Project

1.3.3.12.1 Collection System

1.3.3.12.2 Site Requirements

1.3.3.12.3 Wastewater Characteristics
1.3.3.12.4 Receiving Water Considerations and Assimilative Capacity ... 9
1.3.3.13 Alternatives .. 9
 1.3.3.13.1 Alternate Process and Site .. 9
1.3.3.14 Selected Process and Site .. 9
1.3.3.15 Project Financing ... 9
1.3.3.16 Legal and Other Considerations .. 10
1.3.3.17 Appendices, Technical Information, and Design Criteria ... 10
 1.3.3.17.1 Collection System ... 10
 1.3.3.17.2 Process Facilities .. 10
 1.3.3.17.3 Process Diagrams ... 10
 1.3.3.17.4 Space for Personnel, Laboratories and Records .. 10
 1.3.3.17.5 Chemical Control .. 10
 1.3.3.17.6 Support Data .. 11
1.3.4 Supplemental Information ... 11
 1.3.4.1 Treated Effluent to Land (where applicable) ... 11
 1.3.4.1.1 Location .. 11
 1.3.4.1.2 Geology .. 11
 1.3.4.1.3 Hydrology ... 11
 1.3.4.1.4 Soils .. 12
 1.3.4.1.5 Agricultural Practice ... 12
 1.3.4.1.6 Adjacent Land Use ... 12
1.4 Detailed Design Submission ... 12
 1.4.1 General .. 12
 1.4.2 Design Brief .. 13
 1.4.2.1 Format for Content and Presentation .. 13
 1.4.2.1.1 Title .. 13
 1.4.2.1.2 Letter of Transmittal .. 13
 1.4.2.1.3 Title Page .. 13
 1.4.2.1.4 Table of Contents ... 13
 1.4.2.1.5 Collection System ... 13
 1.4.2.1.6 Process Facilities .. 14
 1.4.2.1.7 Process Diagrams ... 14
 1.4.2.1.8 Laboratory .. 14
1.4.2.1.9 Operation and Maintenance ... 14
1.4.2.1.10 Office Space for Administrative Personnel and Records 14
1.4.2.1.11 Personnel Service – Locker Room and Lunch Room 14
1.4.2.1.12 Chemical Control .. 15
1.4.2.1.13 Collection System Control ... 15
1.4.2.1.14 Control Summary .. 15
1.4.2.1.15 Support Data .. 15
1.4.2.1.16 Appendices ... 15

1.4.3 Plans .. 15
1.4.3.1 General .. 15
1.4.3.2 Plans of Sewers ... 16
 1.4.3.2.1 General Plans .. 16
 1.4.3.2.2 Detail Plans ... 16
 1.4.3.2.3 Location Plan .. 16
 1.4.3.2.4 Detail Plans ... 17
1.4.3.3 Plans of Wastewater Treatment Plant ... 17
 1.4.3.3.1 Location Plans .. 17
 1.4.3.3.2 General Layout .. 17
 1.4.3.3.3 Detail Plans ... 17

1.4.4 Specifications ... 17

1.5 Revisions to Approved Plans ... 18
1.6 Certificates of Approval ... 18
1.7 Operation During Construction ... 18
1.8 Operating Requirements .. 18
 1.8.1 General .. 18
 1.8.2 Operator Requirements .. 18
1.9 Monitoring Requirements ... 19
 1.9.1 Owner/Operator Responsibility ... 19
 1.9.2 Regulator Responsibility ... 19
1.10 Compliance Requirements .. 19
1.11 Reporting Requirements .. 19
Chapter 1 Approval Requirements & Procedures

1.1 General Overview
The approval process for a wastewater collection and/or wastewater treatment/effluent discharge system varies from province to province, and can include multiple overlapping agencies. In all cases, a project proponent should seek early clarification from the respective province as to whether an approval for construction, modification, or operation will apply to a portion or all of a project before the project is advanced. In some cases, an approval is needed for the vertical assets (e.g., wastewater treatment plant and associated discharge, and pump station) but is not required for linear assets, such as extensions to local gravity wastewater collection piping. The application for approval should be submitted, reviewed and approved prior to starting construction. The application should be signed by the Owner, or Owner’s Designate in the format prescribed by the respective province.

Depending on the type of infrastructure to be constructed, there may be additional assessments, approvals, permits and/or authorizations from other provincial and/or federal authorities before proceeding with construction. Determination of an overall regulatory roadmap of a given project is beyond the scope of this manual. The guidelines which follow, however are intended to guide the design stages associated only wastewater collection and wastewater treatment/effluent discharge infrastructure. In general, early consultation with the regulatory authorities is recommended in the project planning stages.

1.1.1 Summary of Approval Process
The approval process can be a multi-step procedure, and varies from province to province. It is recommended that early consultation be conducted with all involved parties including the Owner, design team, regulators, and other key stakeholders. Throughout the project, regular consultation and status review meetings should be continued through the concept, design, approval, and construction stages.

A general approach for approaching a project regulatory process is shown on the following chart and expanded upon in the following sections. It is recognized, however, that not all steps are required in each project, or in each province.
Depending on the nature of the project, the scope of submission to the regulators for each phase of approvals will vary in depth and complexity.

The pre-design report should be submitted to the regulator, with a request for comments or “concept approval.” *Acceptance of a pre-design report (in any form) from a regulator, however, should not be considered as having received official approval to proceed with construction or modification of a project.*

Where applicable, a processing fee form should be completed and the appropriate fee submitted.

The formal approval application, with the plans, specifications, and supporting documentation, should be submitted at least 90 days, or as specified by the regulator, prior to the planned start of the construction or modification project. The plans, specifications and supporting documentation should be stamped with the seal and signature of a Professional Engineer that is licensed to practice in the Province where the project is located. The application should be submitted to the regulatory agency and should be signed by the owner, or where authorization is provided, a person representing the owner.

The regulator should review the application to determine if it conforms with policies, standards, or guidelines enforced by the department. During the review of the application, the regulator may request oral or additional written information on the project. If requested information is not received, the regulator may declare the application incomplete, and advise the applicant of such.

An “Approval/Permit to Construct” should be issued after the design application has been reviewed and found to be satisfactory for all requirements, including climate resilience. *The proposed works should not be undertaken by the Owner until the official “Permit/Approval to Construct” has been issued by the regulator.*
In some provinces, a "Post-Construction Report/Certificate of Compliance" is required at the completion of the project.

After the submission of the Post-Construction Report/Certificate of Compliance, the regulator may provide an "Approval/Permit to Operate" if all aspects of the project are acceptable.

The purpose of the permit is to clearly outline the operating and reporting requirements for the wastewater system.

The expiry date of the approval/permit and the terms for renewal should be indicated by the regulator.

1.2 Pre-Consultation
Proponents planning a wastewater project should consult with the regulator to discuss the scope of the project and to determine the regulatory requirements. Key issues for discussion, may include, but are not be limited to, the following:
- Identification of applicable laws, standards, and regulations that apply to the Project;
- Identification of applicable permits, approvals and authorizations required for the Project;
- Effluent discharge requirements:
 - Wastewater Systems Effluent Regulations (WSER);
 - Provincial requirements;
- Flow Gauging and wastewater Characterization Studies;
- Infiltration and Inflow Investigations;
- At-source Control;
- Climate change impacts, if any;
- Identification of key timelines associated with the review process; and
- Identification of key stakeholders that should be involved in the process.

1.3 Pre-Design (Technical) Report
A pre-design report should be considered as good engineering practice even when not required by the regulator.

A pre-design evaluation will generally be required by the regulator for large scale projects and/or projects involving the development or upgrade of the following:
- Large gravity sewers;
- Pump stations and forcemains; and
- Wastewater treatment/effluent discharge.

The pre-design report should document the “problem statement” or the “problem to be solved”, which may or may not be the same as the long-term goals.

The purpose of a pre-design report is to assess the existing infrastructure and operating conditions, identify climate change issues, if applicable, and to determine options for upgrade, improvement, or replacement.

Architectural, structural, mechanical and electrical conceptual designs are typically not included in the pre-design evaluation; however, their estimated costs must be evaluated in terms of their impact on the overall project costs. Sketches may be included to describe treatment processes where applicable. Outline specifications of process units and special equipment may also be included.

A pre-design evaluation for a proposed project is typically used by:
• The municipality, utility, private developers or industry, for a project description, including findings, conclusions, cost estimates, financing requirements and recommendations;
• Designers, to establish the overall scope of design and for the arrangement, capacity, and type of components to be designed;
• The regulator for evaluation of environmental impacts, for examination of process operations, for verifying compliance with effluent discharge requirements, and for the issuance of a “Concept Approval” prior to the initiation of detailed design;
• Investment groups and government funding agencies to evaluate the "quality" of the proposed project with reference to authorization and financing; and
• News media for description of the project.

The pre-design investigation may provide a “screening” opportunity to determine if the project requires an assessment and/or registration under the respective Environmental Assessment Act, or if climate change impacts are a concern. The respective provincial regulators should be contacted to determine specific requirements.

The pre-design report should be complete so that plans and specifications may be developed from the pre-design without substantial alteration of concept and basic considerations. In short, basic thinking, fundamentals and decisions are outlined in the pre-design report and carried out in the detailed design plans and specifications.

General practice is that a pre-design report may be considered valid for a period of up to 5 years unless new information has resulted in it being obsolete. This practice, however, may vary from project to project or within a given jurisdiction.

1.3.1 Contents of a Pre-Design Report
The pre-design evaluation should, where applicable, include but not be limited to consideration of the following:
• Develop predicted service population;
• Establish a specific service area for immediate consideration and indicate possible extensions;
• Present reliable measurements of flow and analyses of wastewater constituents as a basis of process design;
• Identify existing and potential receiving water uses;
• Identify potential wastewater treatment/effluent discharge sites
• Impact of climate change on wastewater treatment site;
• Estimate costs of immediately proposed facilities;
• Present a reasonable method of financing and show typical financial commitments;
• Suggest an organization and administrative procedure;
• Consider operational requirements with regard to protection of receiving water quality and projected future plant discharge water quality requirements; reflect local bylaws and Federal/Provincial regulations;
• Present summarized findings, conclusions and recommendations for the owner’s guidance;
• Include a site plan indicating location of residences, private and public water supplies, recreational areas, watercourses, zoning, floodplains and other areas of concern when siting sewage collection and treatment facilities; and
• Identify existing problems; including combined sewer overflows (CSO’s) and sanitary sewer overflows (SSO’s) and proposed remedial measures to correct any of the problems.

1.3.2 Concept and Guidance for Plans and Specifications
The pre-design report should be complete so that plans and specifications may be developed from it without substantial alteration of concept and basic considerations. In short, basic thinking, fundamentals and decisions are spelled out in the pre-design report and carried out in the detailed design plans and specifications.
1.3.3 Format for Content and Presentation

The following subsections be utilized as a guideline for content and presentation of the project pre-design report to be submitted to the regulatory agency for review and approval.

1.3.3.1 Title
The Wastewater Facilities Pre-Design Report - collection, conveyance, processing and discharge of wastewater.

1.3.3.2 Letter of Transmittal
A one-page letter typed on the firm's letterhead and bound into the report should include:
- Submission of the report to the client;
- Climate change impact findings;
- Statement of feasibility of the recommended project;
- Acknowledgement to those giving assistance; and
- Reference to the project as outgrowth of approved or "master" plan.

1.3.3.3 Title Page
- Title of project;
- Municipality, county, etc.;
- Names of officials, managers, superintendents;
- Name and address of firm preparing the report; and
- Signature of professional engineer(s) in charge of the project.

1.3.3.4 Table of Contents
- Section headings, chapter headings and sub-headings;
- Maps;
- Graphs;
- Illustrations, exhibits;
- Diagrams; and
- Appendices.

1.3.3.5 Summary
Highlight, very briefly, what was found from the pre-design investigation.

1.3.3.6 Findings
- Population-present, design (when), ultimate;
- Land use and zoning - portion per residential, commercial, industrial, greenbelt, etc;
- Wastewater characteristics and concentrations - portions of total hydraulic, organic and solid loading attributed to residential commercial and industrial fractions;
- Collection system projects - immediate needs to implement recommended project, deferred needs to complete recommended project and pump stations, force mains, appurtenances, etc.
- Selected wastewater treatment process - characteristics of process and characteristics of output.
- Receiving waters - existing water quality and quantity, downstream water uses and impact of project on receiving water;
- Climate change impact projection – projected future receiving water quality and quantity, downstream water uses and impact of project on receiving water, historical/current climate and future projections;
- Proposed project - total project cost, total annual expense requirement for: debt service; operation, personnel and operation, non-personnel;
1.3.3.7 Conclusions
Project, or projects, recommended to client for immediate construction, suggested financing program, etc.

1.3.3.7.1 Recommendations
Summarized, step-by-step actions for the client to follow in order to implement conclusions:
- Acceptance of report;
- Adoption of recommended project;
- Submission of report to regulatory agencies for review and approval;
- Authorization of engineering services for approved project (construction plans, specifications, contract documents, etc.);
- Legal services
- Enabling ordinances, resolutions, etc., required;
- Adoption of sewer-use ordinance;
- Adoption of operating rules and regulations;
- Financing program requirements;
- Organization and administration (structure, personnel, employment, etc.); and
- Time schedules - implementation, construction, completion dates, reflecting applicable hearings, stipulations, abatement orders.

1.3.3.8 Introduction

1.3.3.8.1 Purpose
Reasons for report and circumstances leading up to report.

1.3.3.8.2 Scope
Coordination of recommended project with approved comprehensive master plan and guideline for developing the report.

1.3.3.9 Background
Present only appropriate past history.

1.3.3.9.1 General
- Existing area, expansion, annexation, inter-municipal service, ultimate area;
- Drainage basin, portion covered;
- Population growth, trends, increase during design life of facility (graph);
- Residential, commercial and industrial land use, zoning, population densities, industrial types and concentrations;
- Topography, general geology and effect on project;
- Meteorology, precipitation, runoff, flooding, etc. and effect on project;
- Future climate change parameters; and
- Total period of time for which project is to be studied.
1.3.3.9.2 Economic
- Assessed valuation, tax structure, tax rates, portions for residential, commercial, industrial property.
- Employment from within and outside service area;
- Transportation systems, effect on commuter influx;
- Exempt property; churches and agricultural exhibition, properties and effect on project; and
- Costs of present water and wastewater services.

1.3.3.9.3 Regulations
- Existing ordinances, rules and regulations including defects and deficiencies, etc;
- Recommended amendments, revisions or cancellation and replacement;
- Sewer-use ordinance (toxic, aggressive, volatile, etc., substances);
- Surcharge based on volumes and concentration for industrial wastewaters;
- Existing contracts and agreements (inter-municipal, etc.); and
- Enforcement provisions including inspection, sampling detection, penalties, etc.

1.3.3.10 Hydraulic Capacity
The following flows for the design year shall be identified and used as a basis for design for sewers, lift stations, wastewater treatment plants, treatment units, and other wastewater handling facilities. Where any of the terms defined in this section are used in these design standards, the definition contained in this Section applies.

Design Average Flow
The design average flow is the average of the daily volumes to be received for the continuous 12-month period expressed as a volume per unit time. However, the design average flow for facilities having critical seasonal high hydraulic loading periods (e.g., recreational areas, campuses, industrial facilities) shall be based on the daily average flow during the seasonal period. Climate change projections should be considered for daily volumes.

Design Maximum Day Flow
The design maximum day flow is the largest volume of flow to be received during a continuous 24-hour period expressed as a volume per unit time.

Design Peak Hourly Flow
The design peak hourly flow is the largest volume of flow to be received during a one-hour period expressed as a volume per unit time.

Design Peak Instantaneous Flow
The design peak instantaneous flow is the instantaneous maximum flow rate to be received.

Design Minimum Day Flow
The design minimum day flow is the smallest volume of flow to be received during a 24-hour period during dry weather when infiltration/inflow are at a minimum, expressed as a volume per unit time.

1.3.3.11 Investigate Considerations – Existing Facilities Evaluation

1.3.3.11.1 Existing Collection System
- Inventory of existing sewers;
- Isolation from water supply wells;
- Adequacy to meet project needs (structural condition, hydraulic capacity tabulation), and future climate change impacts;
- Gauging and infiltration tests (tabulate);
• Overflows and required maintenance, repairs and improvements;
• Outline repair, replacement and storm water separation requirements;
• Evaluation of costs for treating infiltration/inflow versus costs for rehabilitation of system;
• Establish renovation priorities, if selected;
• Present recommended annual program to renovate sewers; and
• Indicate required annual expenditure.

1.3.3.11.2 Existing Treatment Plant
• Area for expansion;
• Surface condition;
• Subsurface conditions;
• Isolation from habitation;
• Isolation from water supply structures;
• Enclosure of units, winter conditions, odour control, landscaping, etc.; and
• Flooding (predict elevation of 25- and 100-year flood stage). Including climate change impacts and an increase in sea level rise.

1.3.3.11.3 Existing Process Facilities
• Capacities and adequacy of units (tabulate);
• Relationship and/or applicability to proposed project;
• Age and condition;
• Adaptability to different usages;
• Structures to be retained, modified or demolished; and
• Outfall.

1.3.3.11.4 Existing Wastewater Characteristics
• Water consumption (from records) total, unit, industrial;
• Wastewater flow pattern, peaks, total design flow;
• Physical, chemical and biological characteristics and concentrations; and
• Residential, commercial, industrial, infiltration fractions, considering organic solids, toxic aggressive, etc., substances; tabulate each fraction separately and summarize.

1.3.3.12 Proposed Project
1.3.3.12.1 Collection System
• Inventory of proposed additions;
• Assess climate change impact;
• Isolation from water supply well, reservoirs, facilities, etc.;
• Area of services;
• Unusual construction problems;
• Utility interruption and traffic interference;
• Restoration of pavements, lawns, etc.; and
• Basement flooding prevention during power outage.

1.3.3.12.2 Site Requirements
Comparative advantages and disadvantages as to cost, hydraulic requirements, flood control, accessibility, enclosure of units, odour control, landscaping, climate change vulnerability, etc., and isolation with respect to potential nuisances and protection of water supply facilities.
1.3.3.12.3 Wastewater Characteristics
- Character of wastewater necessary to insure amenability to process selected;
- Need to pretreat industrial wastewater before discharge to sewers;
- Portion of residential, commercial, industrial wastewater fractions to comprise projected growth.

1.3.3.12.4 Receiving Water Considerations and Assimilative Capacity
- Wastewater discharges upstream;
- Receiving water base flow (utilize critical flow as specified by approving agency);
- Characteristics (concentrations) of receiving waters;
- Downstream water uses including water supply, recreation, agricultural, industrial, etc.;
- Impact of proposed discharge on receiving waters (near and long-term discharge inclusive of climate change impacts);
- Tabulate assimilative capacity requirements;
- Listing of effluent characteristics; and
- Tabulation and correlation of plant performance versus receiving water requirements.

1.3.3.13 Alternatives
Alternatives should consider such items as regional solution, optimum operation of existing facilities, flow and waste reduction, location of facilities, phased construction, necessary flexibility and reliability, sludge disposal, alternative treatment sites, alternative processes and institutional arrangements.

1.3.3.13.1 Alternate Process and Site
- Describe and delineate (line diagrams);
- Preliminary design for cost estimates;
- Estimates of project cost (total) dated, keyed to construction cost index, escalated, etc.;
- Advantages and disadvantages of each;
- Individual differences, requirements, limitations;
- Characteristics of process output;
- Comparison of process performances;
- Operation and maintenance expenses;
- Annual expense requirements (tabulation of annual operation, maintenance, personnel, debt obligation for each alternate), and
- Environmental assessment of each.

1.3.3.14 Selected Process and Site
- Identify and justify process and site selected;
- Adaptability to future needs, conditions and climate parameters;
- Environmental assessment;
- Outfall location; and
- Describe immediate and deferred construction.

1.3.3.15 Project Financing
- Review applicable financing methods;
- Effect of Provincial and Federal funding;
- Assessment by frontage, area unit or other benefit;
- Charges by connection, occupancy, readiness-to-servce, water consumption, industrial wastewater discharge, etc.;
- Existing debt service requirements;
- Annual financing and bond retirement schedule;
• Tabulate annual operating expenses;
• Show anticipated typical annual charge to user and non-user; and
• Show how representative properties and users are to be affected.

1.3.3.16 Legal and Other Considerations
• Needed enabling legislation, ordinances, rules and regulations;
• Contractual considerations for inter-municipal cooperation;
• Public information and education; and
• Statutory requirements and limitations.

1.3.3.17 Appendices, Technical Information, and Design Criteria
1.3.3.17.1 Collection System
• Design tabulations - flow, size, velocities, etc.;
• Regulator or overflow design;
• Pump station calculations, including energy requirements;
• Special appurtenances;
• Stream crossings; and
• System map (report size).

1.3.3.17.2 Process Facilities
• Criteria selection and basis;
• Hydraulic and organic loadings - minimum, average, maximum and effect;
• Unit dimensions;
• Rates and velocities;
• Detentions;
• Concentrations;
• Recycle;
• Chemical additive control;
• Physical control;
• Removals, effluent concentrations, etc. Include a separate tabulation for each unit to handle solid and liquid fractions;
• Energy requirement; and
• Flexibility.

1.3.3.17.3 Process Diagrams
• Process configuration, interconnecting piping, processing, flexibility, etc.;
• Hydraulic profile;
• Organic loading profile;
• Solids control system;
• Solids profile; and
• Flow diagram with capacities, etc.

1.3.3.17.4 Space for Personnel, Laboratories and Records
• Provide necessary space for required personnel and laboratory facilities; and
• Provide readily available space for record keeping.

1.3.3.17.5 Chemical Control
• Processes needing chemical addition;
• Chemicals and feed equipment; and
• Tabulation of amounts and unit and total costs.

1.3.3.17.6 Support Data
• Outline unusual specifications, construction materials and construction methods;
• Maps, photographs, diagrams (report size);
• Other.

1.3.4 Supplemental Information
1.3.4.1 Treated Effluent to Land (where applicable)
In addition to the required pre-design report, when treated effluent is proposed to be discharge on land, the designer shall include supplemental information, as outlined below. This information shall include any material that is pertinent about the location, geology, topography, hydrology, soils, areas for future expansion, and adjacent land use.

1.3.4.1.1 Location
The following supplement information is required to be submitted with the pre-design report.
• A copy of the topographic map of the area showing the exact boundaries of the proposed application area;
• A topographic map of the total area owned by the applicant at a scale of approximately 1: 10 000. It should show all buildings, the waste disposal system, the spray field boundaries and the buffer zone. An additional map should show the spray field topography in detail with a contour interval of 0.5 m and include buildings and land use on adjacent lands within 400 m of the project boundary;
• All water supply wells which might be affected shall be located and identified as to use; e.g., potable, industrial, agricultural, and class of ownership; e.g., public, private, etc.;
• All abandoned wells, shafts, etc., shall be located and identified. Pertinent information therein shall be furnished; and
• Separation distances shall comply with requirements of sections 3.12 and 3.13.

1.3.4.1.2 Geology
• The geologic formations (name) and the rock types at the site;
• The degree of weathering of the bedrock;
• The local bedrock structure including the presence of faults, fractures and joints;
• The character and thickness of the surficial deposits (residual soils and glacial deposit);
• In limestone terrain, additional information about solution openings and sinkholes is required; and
• The source of the above information must be indicated.

1.3.4.1.3 Hydrology
• The depth to seasonal high-water table (perched and/or regional) must be given, including an indication of seasonal variations. Static water levels must be determined at each depth for each aquifer in the depth under concern. Critical slope evaluation must be given to any differences in such levels;
• The direction of groundwater movement and the point(s) of discharge must be shown on one of the attached maps;
• Chemical analyses indicating the quality of groundwater at the site must be included;
• The source of the above data must be indicated;
• The following information shall be provided from existing wells and from such test wells as may be necessary:
 - Construction details - where available; Depth, well log, pump capacity, static levels, pumping water levels, casing, grout material, and such other information as may be pertinent.
- Groundwater quality: e.g., Nitrates, total nitrogen, chlorides, sulphates, pH, alkalinities, total hardness, coliform bacteria, etc.; and
- A minimum of one groundwater monitoring well must be drilled for the protection of potable water wells or as determined by the Regulatory agency have jurisdiction, in each dominant direction of groundwater movement and between the project site and public well(s) and/or high-capacity private wells, with provision for sampling at the surface of the water table and at 1.5 m below the water table at each monitoring site. The location and construction of the monitoring well(s) must be approved by the regulatory authority. These may include one or more of the test wells where appropriate.

1.3.4.1.4 Soils
- A soils map of the spray field should be furnished, indicating the various soil types. This may be included on the large-scale topographic map. Soils information can normally be secured through the Federal Department of Energy Mines and Resources, the Federal Department of Agriculture, or the applicable provincial department;
- The soils should be named and their texture described;
- Slopes and agricultural practice on the spray field are closely related. Slopes on cultivated fields should be limited to 4%;
- Slopes on sodded fields should be limited to 8%. Forested slopes should be limited to 8% for year-round operation, but some seasonal operation slopes up to 14% may be acceptable;
- The thickness of soils should be indicated. Method of determination should be included;
- Data should be furnished on the exchange capacity of the soils. In case of industrial wastes particularly, this information must be related to special characteristics of the wastes;
- Information must be furnished on the internal and surface-drainage characteristics of the soil materials. This includes the soil’s infiltration capacity and permeability; and
- Proposed application rates should take into consideration the drainage and permeability of the soils, the discharge capacity, and the distance to the water table.

1.3.4.1.5 Agricultural Practice
- The present and intended soil-crop management practices, including forestation, shall be stated;
- Pertinent information shall be furnished on existing drainage systems; and
- When cultivated crops are anticipated, the kinds used and the harvesting frequency should be given; the ultimate use of the crop should also be given. See Section 10.3.3.4 for crop considerations.

1.3.4.1.6 Adjacent Land Use
- Present and anticipated use of the adjoining lands, up to 400m from the site, must be indicated. This information can be provided on one of the maps and may be supplemented with notes;
- The plan shall show existing and proposed screens, barriers, or buffer zones to prevent blowing spray from entering adjacent land areas; and
- If expansion of the facility is anticipated, the lands which are likely to be used for expanded spray fields must be shown on the map.

1.4 Detailed Design Submission
1.4.1 General
The owner or authorized representative must prepare and submit an application and detailed design documents to the regulator for approval. The application should be signed by the owner, or where authorization is provided, a person representing the owner.
Applications for specific items within the project, such as stream crossings may require approval from other jurisdictions.

An Approval/Permit to construct cannot be issued until final, complete, detailed plans and specifications have been submitted to the regulator, reviewed, and found to be satisfactory.

Detailed design documents to be submitted with the application should include, but not be limited to:
• Design brief;
• Design plans;
• Specifications;
• Quantities and cost estimates; and
• Other information as required by the regulator.

1.4.2 Design Brief
The Design Brief shall contain detailed design calculations for each unit or process of the wastewater treatment or collection facility. The design brief shall also address operational and maintenance issues for that particular facility.

1.4.2.1 Format for Content and Presentation
It is urged that the following subsection be utilized as a guideline for content and presentation of the project Design Report to the appropriate regulatory agency for review and approval.

1.4.2.1.1 Title
The Wastewater Facilities Design Report - collection, conveyance, processing and discharge of wastewater.

1.4.2.1.2 Letter of Transmittal
A one-page letter typed on the firm's letterhead and bound into the report should include:
• Submission of the report to the client;
• Acknowledgement to those giving assistance; and
• Reference to the project as outgrowth of approved or "master" plan.

1.4.2.1.3 Title Page
• Title of project;
• Municipality, county, district, village, etc;
• Names of officials, managers, superintendents;
• Name and address of firm preparing the report; and
• Seal and signature of professional engineer(s) in charge of the project.

1.4.2.1.4 Table of Contents
• Section headings, chapter headings and sub-headings
• Maps;
• Graphs;
• Illustrations, exhibits;
• Diagrams; and
• Appendices.

1.4.2.1.5 Collection System
• Detailed design tabulations - flow, size, velocities, etc;
• Regulator or overflow design calculations;
• Detailed pump station calculations, including energy requirements;
• Special appurtenances;
• Stream crossings; and
• System map (report size).

1.4.2.1.6 Process Facilities
• Hydraulic and organic loadings - minimum, average, maximum and effect;
• Detailed calculations used to determine:
 - Unit dimensions;
 - Rates and velocities;
 - Detentions;
 - Concentrations;
 - Recycle;
 - Removals, effluent concentrations, etc. Include a separate tabulation for each unit to handle solid and
 liquid fractions;
 - Energy requirement;
 - Flexibility; and
• Chemical requirements and control.

1.4.2.1.7 Process Diagrams
• Process configuration, interconnecting piping, processing, flexibility, etc;
• Hydraulic profile;
• Organic loading profile;
• Solids control system;
• Solids profile; and
• Flow diagram with capacities, etc.

1.4.2.1.8 Laboratory
• Physical and chemical tests and frequency to control process;
• Time for testing;
• Space and equipment requirements; and
• Personnel requirements - number, type, qualifications, salaries, benefits (tabulate).

1.4.2.1.9 Operation and Maintenance
• Routine and special maintenance duties;
• Time requirements;
• Tools, equipment, vehicles, safety, etc.;
• Personnel requirements - number, type, qualifications, salaries, benefits, (tabulate); and
• Maintenance work space and storage.

1.4.2.1.10 Office Space for Administrative Personnel and Records
• Provide necessary space for required personnel and readily available space for record keeping.

1.4.2.1.11 Personnel Service – Locker Room and Lunch Room
• Provide necessary locker room and Lunch room space.
1.4.2.1.12 Chemical Control
- Process needing chemical addition;
- Chemicals and feed equipment; and
- Tabulation of amounts and unit and total costs.

1.4.2.1.13 Collection System Control
- Cleaning and maintenance;
- Regulator and overflow inspection and repair;
- Flow gauging;
- Industrial sampling and surveillance;
- Regulation enforcement;
- Equipment requirements;
- Trouble-call investigation; and
 - Personnel requirements - number, type, qualifications, salaries, benefits (tabulate). required???

1.4.2.1.14 Control Summary
- Personnel;
- Equipment;
- Chemicals;
- Utilities - list power requirements of major units; and
- Summation.

1.4.2.1.15 Support Data
- Outline unusual specifications, construction materials and construction methods;
- Maps, photographs, diagrams (report size); and
- Other.

1.4.2.1.16 Appendices
Related data not necessary to an immediate understanding of the design report should be placed in the appendices.

1.4.3 Plans

1.4.3.1 General
All plans for wastewater systems shall bear a suitable title showing the name of the municipality, sewer district, or institution; and shall show the scale in appropriate units, the north point, date and the name of the engineer, and engineer’s signature on an imprint of engineer’s registration seal.

The plans shall be clear and legible. They shall be drawn to scale which will permit all necessary information to be plainly shown. The size of the plans should be 570 x 817 mm. Datum used should be indicated. Locations and logs of test borings, when made, shall be shown on the plans.

Detail plans shall consist of plan views, elevations, sections and supplementary views which, together with the specifications and general layouts, provide the working information for the contract and construction of the works. Include dimensions and geodetic elevations of structures, the location and outline form of equipment, location and size of piping, water levels and ground elevations.
1.4.3.2 Plans of Sewers
1.4.3.2.1 General Plans
A comprehensive plan of the existing and proposed sewers shall be submitted for projects involving new sewer systems or substantial additions to existing systems. This plan shall indicate the following:

- Geographical Features;
- Topography and elevations - existing or proposed streets and all streams or water surfaces shall be clearly shown. Contour lines at suitable intervals should be included;
- Streams - the direction of flow in all streams and high and low water elevations of all water surfaces at sewer outlets and overflows shall be shown;
- Boundaries - the boundary lines of the municipality, the sewer district or area to be sewered shall be shown;
- Sewers; and
- Identify sensitive areas and potential environment issues and areas vulnerable to climate change impacts.

The plan shall show the location, size, and direction of flow of all existing and proposed sanitary and combined sewers draining to the treatment works concerned.

1.4.3.2.2 Detail Plans
Profiles should have a horizontal scale of not more than 1:500 and a vertical scale of not more than 1:50. Plans and profiles shall indicate:

- Location of streets and sewers; and
- Line of ground surface, size, material and type of pipe, length between manholes, invert and surface elevation at each manhole and grade of sewer between each two adjacent manholes. All manholes shall be numbered on the plan and correspondingly numbered on the profile.

Where there is any question of the sewer being sufficiently deep to serve any residence, the elevation and location of the basement floor shall be plotted on the profile of the sewer which is to serve the house in question. The engineer shall state that all sewers are sufficiently deep to serve adjacent basements except where otherwise noted on the plans.

- Locations of all special features such as inverted siphons, concrete encasement, elevated sewers, etc.;
- All known existing structures both above and below ground which might interfere with the proposed construction, particularly water mains, gas mains, storm drains, etc.;
- Special detail drawings, made to a scale to clearly show the nature of the design, shall be furnished to show the following particulars:
 - All stream crossings and sewer outlets, with elevations of the stream bed and of normal and extreme high and low water levels;
 - Details of all special sewer joints and cross-sections; and details of all sewer appurtenances such as manholes, lamp holes, inspection chambers, inverted siphons, regulators, tide gates and elevated sewers.
- Details and plans of CSOs and treatment components according to the Regulatory Agency having jurisdiction.

1.4.3.3 Plans of Sewage Pumping Stations
1.4.3.3.3 Location Plan
A plan shall be submitted for projects involving construction or revision of pumping stations. This plan shall show the following:

- The location and extent of the tributary area;
- Any municipal boundaries with the tributary area;
- The location of the pumping station and force main and pertinent elevations; and
• Identify sensitive areas and potential environment issues and areas vulnerable to climate change impacts.

1.4.3.2.4 Detail Plans
Detail plans shall be submitted showing the following, where applicable:
• Topography of the site;
• Existing pumping station and pump station vulnerability to climate change impacts;
• Proposed pumping station, including provisions for installation of future pumps;
• Elevation of high water at the site and maximum elevation of sewage in the collection system upon occasion of power failure;
• Maximum hydraulic gradient in downstream gravity sewers when all installed pumps are in operation; and test borings and groundwater elevations; and
• Details and plans of CSOs and treatment components according to the Regulatory Agency having jurisdiction.

1.4.3.3 Plans of Wastewater Treatment Plant
1.4.3.3.1 Location Plans
A plan shall be submitted, showing the wastewater treatment plant in relation to the remainder of the system.

Sufficient topographic features shall be included to indicate its location with relation to streams and the point of discharge of treated effluent.

• Identify sensitive areas and potential environment issues: and
• Identify wastewater treatment plant area vulnerability to climate change impacts.

1.4.3.3.2 General Layout
Layouts of the proposed sewage treatment plant shall be submitted, showing:
• Topography of the site;
• Size and location of plant structures;
• Schematic flow diagram showing the flow through various plant units;
• Piping, including any arrangements for by-passing individual units. Materials handled and direction of flow through pipes shall be shown;
• Hydraulic profiles showing the flow of sewage, supernatant, mixed liquor and sludge; and
• Test borings and ground water elevations

1.4.3.3.3 Detail Plans
• Location, dimensions and elevations of all existing and proposed plant facilities;
• Elevations of high and low water level of the body of water to which the plant effluent is to be discharged;
• Climate change projections including future climate change parameters;
• Type, size, pertinent features and manufacturer's rated capacity of all pumps, blowers, motors and other mechanical devices;
• Minimum, average and maximum hydraulic flow in profile; and
• Adequate description of any features not otherwise covered by specifications or engineer's report.

1.4.4 Specifications
Complete technical specifications for the construction of sewers, pumping stations, wastewater treatment plants and all appurtenances, shall accompany the plans.
The specifications accompanying construction drawings shall include, but not be limited to, all construction information not shown on the drawings which is necessary to inform the builder in detail of the design requirements as to the quality of materials and workmanship and fabrication of the project and the type, size, strength, operating characteristics and rating of equipment; allowable infiltration; the complete requirements for all mechanical and electrical equipment, including machinery, valves, piping and jointing of pipe; electrical apparatus, wiring and meters; laboratory fixtures and equipment; operating tools; construction materials; special filter materials such as stone, sand, gravel or slag; miscellaneous appurtenances, chemicals when used; instructions for testing materials and equipment as necessary to meet design standards; and operating tests for the completed works and component units. It is suggested that these performance tests be conducted at design load conditions wherever practical.

1.5 Revisions to Approved Plans
Any deviations from approved plans or specifications affecting capacity, flow or operation of units shall be approved in writing before such changes are made. Plans or specifications so revised should, therefore, be submitted well in advance of any construction work which will be affected by such changes, to permit sufficient time for review and approval. Structural revisions or other minor changes not affecting capacities, flows, or operation will be permitted during construction without approval. "As-built" plans clearly showing such alterations shall be submitted to the regulator at the completion of the work.

1.6 Certificates of Approval
The Approval/Permit to Construct shall be issued prior to construction by the appropriate regulatory agency to the proponent only upon final approval of the Design report, plans, specifications and contract documents. The permit shall provide the proponent with the authority to proceed with the construction of the project. The Approval/Permit to Operate shall be issued to the proponent, prior to operation, by the appropriate regulatory agency only upon successful completion of construction, application for treatment plant classification and the naming of the treatment plant operator(s). The permit shall provide the proponent with the authority to proceed with the operation of the project. In some instances, the Certificate of Approval to Operate is issued after a period of 6 months of continuous and successful operation.

1.7 Operation During Construction
Specifications shall contain, if required, a protocol for keeping the existing treatment plant units in operation during construction of plant additions. Should it be necessary to take operational units out of operation, a shut-down procedure which will mitigate environment and public health effects on the receiving water or land, shall be prepared by the proponent, and reviewed and approved, prior to the shut-down, by the appropriate reviewing agency(s).

1.8 Operating Requirements
1.8.1 General
Any newly constructed sewerage system or treatment plant shall be put into operation only if it meets the Approval/Permit to Construct and Operate as required by the respective provincial regulators.

1.8.2 Operator Requirements
Operator requirements are determined by the respective provincial regulators.
1.9 Monitoring Requirements
Monitoring requirements are determined by the respective provincial regulators and are typically outlined in the Approval/Permit to Operate.

1.9.1 Owner/Operator Responsibility
The owner/operator of any wastewater treatment or collection facility shall be responsible for conducting all process control and compliance monitoring. The owner/operator shall ensure that all compliance monitoring is conducted in accordance with the Approval/Permit to Operate.

1.9.2 Regulator Responsibility
The regulatory agency shall be responsible for enforcing compliance requirements, as described in the "Approval/Permit to Operate" issued to the wastewater treatment or collection facility.

1.10 Compliance Requirements
Compliance requirements will be established by regulatory agencies having jurisdiction.

1.11 Reporting Requirements
The operator/authority/owner shall ensure that all monitoring results are submitted to the appropriate regulatory agency in a timely manner or as a minimum as required in the “Approvals/Permit to Operate”.
Chapter 2 Incorporating Climate Change in the Design of Wastewater Infrastructure

2.1 Introduction to Climate Change Adaptation in this Guidelines

Understanding climate change and its impacts on wastewater infrastructure has become an important and necessary consideration for utilities in the Atlantic Region of Canada. The topic of climate change itself is complex, let alone within the context of planning, designing and operating wastewater infrastructure. Utilities are anticipated to encounter both challenges and opportunities related to addressing the impacts of projected future climate change. It is anticipated that impacts from climate change will vary widely across the Atlantic Region due to the size and diversity of the region. There are also significant regional economic and demographic differences, where every utility has its own unique set of priorities and finite resources. As such, when one combines these factors, it becomes evident that each region within Atlantic Canada will be impacted by climate change differently.

Defining Climate Change

The Intergovernmental Panel on Climate Change (IPCC) defines climate change as “a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties, and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes, or external forcing, or to persistent anthropogenic changes in the composition of the atmosphere or in land use.”

The United Nations Framework Convention on Climate Change (UNFCCC) defines climate change as “a change of climate which is attributed directly or indirectly to human activity that alters the composition of the global atmosphere and which is in addition to natural climate variability observed over comparable time periods.”

Historical and projected trends point to the need for Atlantic Canada to adapt its existing and future wastewater infrastructure in order to minimize the social and economic costs associated with severe weather and longer-term climate change trends. This guideline will specifically focus on adaptation, where the information contained within this guideline is intended to assist in the development of adaptation strategies during the planning, design and operational stages for a utility in the wastewater sector.

Note: This guideline document will focus on climate change adaptation instead of climate change mitigation. Climate change mitigation is an approach to reduce the human-induced greenhouse gas emissions that are released into the atmosphere and limit the extent of future climate change. Where possible, the guideline will identify opportunities to reduce energy consumption and demand in wastewater operations to limit human-induced greenhouse gas emissions. In general, utilities should seek opportunities to reduce energy use and consumption, as it can be both economical and serve to limit future climate change impacts.

Given regional differences in Atlantic Canada, there is limited value in presenting detailed site-specific climate change parameters, indices, and adaptation design processes in this guideline. Instead, this guideline aims to build the capacity of utilities and designers seeking to incorporate climate change information and adaptation strategies within infrastructure planning, design and operations; using accessible climate science resources and methods which are both reputable and reliable.

Within this context, it is important to recognize that improvements in the scientific community’s understanding of our changing climate is ongoing. The capacity of powerful computational models and scientific methods to
represent multiple climate and ocean processes has significantly improved since the early 2000s. As models continue to resolve a higher number of processes more accurately; new datasets, better post-processing of climate projections, and new data portals will become available. It is encouraged for practitioners using this guideline to maintain awareness of evolution in climate data and science, and if possible, regularly review newly distributed climate change data. Practitioners are encouraged to regularly engage with climate change scientists or professionals, and to collaborate with such experts when responding to new risks and opportunities during the adaptation planning process, from preliminary stages through to operations.

2.2 Scope of Climate Change Adaptation in this Guideline
The guidelines serve as a foundational introduction to climate change adaptation for wastewater utilities in Atlantic Canada. Adaptation planning is not a new for utilities, and should not be considered a separate effort from day-to-day operations. Adaptation strategies that provide multiple benefits can be integrated into current asset management, permit compliance, emergency response planning, capacity development and other decision-making processes at utilities (EPA, 2015). It is important to consider many different options to develop a comprehensive adaptation plan that satisfies the utility needs without overstretching resources. In many cases, adaptation options can also address issues related to budget, aging infrastructure and other concerns, in addition to providing greater resilience to climate impacts. As such, climate change adaptation strategies may provide benefits such as more sustainable and efficient operations, cost savings, maintenance of adequate wastewater treatment and the reduction of greenhouse gas emissions.

Adaptation: refers to initiatives and measures to reduce the vulnerability of natural and human systems against actual or expected climate change effects. Various types of adaptation exist such as, anticipatory and reactive, private and public, and autonomous and planned, to name a few (ICLR, 2012).

Climate and weather of Atlantic Canada vary spatially (across regions) and temporally (from one season to the other). Significant socioeconomic differences exist across the region. Some communities have more capacity to adapt to the impact of climate change, whereas other communities have less diversified economies, limited economic resources and limited access to services. The design, materials, size and maintenance of infrastructure systems can reflect these differences between communities and, as a result, different communities can be affected differently by climate change (J. Boyle, M. Cunningham, J. Dekens, 2013). It is, therefore, important to recognize that each community will develop a climate adaptation strategy for its wastewater infrastructure which is uniquely suited to the needs, resources and environment in which it operates.

The ensuing sections will highlight the linkages between changing climate and the planning, design and operations of infrastructure managed by water and wastewater utilities. Each section in the chapter will build on prior sections to deliver a comprehensive overview for the strategies available to planners, designers and regulators to gather climate change information, assess impacts and risks, and to implement effective adaptation planning. Throughout the guideline, reference will be made to climate change impacts, and what to consider in a climate change context when outlining the steps for planning, designing and operating a wastewater facility.

2.3 Climate Change Projections for use by Practitioners
To use climate change projections, practitioners should understand where climate data comes from, what general assumptions are made in generating this data, and for what application(s) the data is valid. This section aims to provide the users of this guideline with a brief background in how climate data is generated, and the difference between outputs such as a climate parameter, and index. In particular, users should understand the uncertainties which are associated with climate data, and how to manage the rapidly evolving availability of climate change data for planning, design and operations of wastewater infrastructure.
2.3.1 Global and Regional Climate Models

Future climate change projections and trends are typically determined using climate models. Climate models divide the earth into small grid cells, which vary in size. Within each of these grid cells a series of equations are resolved to simulate atmospheric, oceanic, and other physical processes. Each of the grid cells in the model are linked to one another, and together they create a model domain, or geographic area. There are over thirty (30) Global Climate Models (GCMs) which are owned by leading scientific institutions around the world. These models require significant computing power to simulation future global climate scenarios using greenhouse gas (GHG) emission scenarios as their inputs. Emission scenarios represent possible GHG emission patterns over the 21st century from anthropogenic emission sources. These scenarios represent different futures based on the amount of GHG emitted globally, and account for shifting patterns in global population, future technology, alternative energies, policies, and conflict(s). There are currently four industry standard scenarios, called Representative Concentration Pathways (RCP), that have been established by the Intergovernmental Panel on Climate Change (IPCC). These are commonly known as:

- **RCP 2.6** - Assumes that GHG emissions stay consistent until 2020 when they begin to decline until 2100, where average global warming is limited to approximately ~2.0 °C in this time period.
- **RCP 4.5** - A future with relatively ambitious emissions reductions where CO2 emissions increase only slightly before a decline commences around 2040, where average global warming is limited to approximately ~2.4 °C by 2100.
- **RCP 6.0** - A future where CO2 emissions stabilize, where average global warming is limited to approximately ~2.8 °C by 2100.
- **RCP 8.5** - A future with no implementation of policy changes to reduce emissions, and thus increasing GHG emissions in to the future, where average global warming is anticipated to increase by ~4.3 °C by 2100.

All global climate model projections can suffer from so-called ‘systematic biases’ when they are used to analyze local-scale climates. Moreover, GCM datasets are generally calculated at fairly coarse spatial resolutions (>1° lat/lon, or more than 100 km x 100 km in southern Canada) that further impacts the value of the original GCM data for studying local climate changes. Therefore, to improve the utility of GCM projections for local-scale analyses of climate change, scientists employ various types of systematic bias-correction and spatial downscaling techniques (CAoC, 2019).

Generally, bias correction and downscaling are done at the same time. Bias correction/downscaling comes in two flavours: dynamic and statistical. The purpose of both types is to remove systematic bias within the data, as much as possible, and to convert the coarse-resolution GCM data into higher-resolution data (with data points closer together than in the original model output).

GLOBAL CLIMATE MODEL (GCM) outputs can be focused onto smaller areas by using a process referred to as “downscaling”. This is the methodology applied in the Canadian Climate Atlas, a publicly available web-tool which provides regionally downscaled climate data for practitioners and decisions makers across Canada.

REGIONAL CLIMATE MODEL (RCM) output in Canada, is can be extracted from the Canadian model, CanRCM4, which is driven by global climate models. Data can be extracted from the Canadian Centre for Climate Modelling and Analysis.

Note: It is recommended to adopt RCP 4.5 and RCP 8.5 scenarios when assessing climate change risks and impacts. More than one emission scenario is often used to cover the uncertainty related to the future path that the humanity will take to manage emissions.
2.3.2 Use of Global and Regional Climate Models

Global and regional climate models are often limited in both their computational and theoretical ability to capture the complexity of the climate system. Therefore, they must use a large number of approximations. Further, climate models are subject to variability and uncertainty that can result in overestimates or underestimates of predicted values based on the numerical methods in the equations or the model resolution. The use of a single model solution can be considered as one possible future while the median of many models’ solutions is considered to be the most unbiased representation of the future. This approach for managing model uncertainty and variability is called ensemble modeling.

The decision to use data from either GCMs, RCMs, downscaled data from GCMs, or a combination of these sources, should be made in consultation with a trained climate scientist or professional knowledgeable in the field of climate change data. Significant differences may exist in the data generated by the methods listed, let alone the ensemble of models selected for the analysis, and therefore the implications in choosing data sources can result in meaningful impacts in the design and decision-making processes. As a starting point it is recommended to consult carefully curated tools and methods publicly available through the Canadian Centre for Climate Modelling and Analysis and the Canadian Climate Atlas.

Note: Certain climate phenomena are not well captured by climate models. Examples include: lightning, freezing rain, wind gusts, hurricane, tornado, blizzard, acid rain, shortwave (UV) radiation, and air quality. In this case, it is recommended to consider how the factors that affect these phenomena are changing. Such an assessment should be completed by a climate scientists or experts familiar with studying climate trends and correlations.

Typically, the outputs of GCMs and RCMs include standard climate parameters like temperature, precipitation, humidity, snow, and wind. Indices are calculated from these parameters to provide detailed and meaningful projections that can be used by decision-makers. The terms climate parameter and index have different interpretations in climate science and impact science. For the purposes of this manual, the definitions of climate parameter and index will be characterized by:

Parameter: Influence the properties of a climate system and refers to direct measurement or climate model outputs such as temperature, pressure or precipitation.

Index: A calculated value that can be used to describe the state and the changes in the climate system, for example, the number of summer days and tropical nights, or the maximum length of a wet spell.

There are many types of indices which can be generated from climate parameters, a range of values (i.e. daily temperature ranges), threshold-based parameters, and minimum and maximum parameters such as the length of dry or wet spells. Some indices require a combination of parameters, such as humidity which involves both precipitation and temperature. Users of this guideline should consider whether they are seeking a climate parameter, or index extrapolated from climate parameters.

2.3.3 Updates and Climate Data Evolution

Climate science is an evolving discipline, where new data, models and projections are regularly published. As these data become available, the projections adopted by a utility in its design or planning process should not be presumed outdated. Uncertainties in climate data, such as GHG emission trends, are evolving. For this reason, it is worthwhile to monitor new projections and compare them to those used in a design, adaptation planning, or operational plans. If new projections differ substantially from prior projections, it may be warranted to revisit a project climate risk assessment or adaptive capacity assessment of infrastructure, policies, or programs.
Some impact and risk assessments do not directly apply precise climate information; rather interpret and act on trends which are less likely to change drastically. For this reason, regular maintenance checks of the projections are a good practice, particularly when a new RCP is established, or a climate framework is updated by the global scientific community.

Note: A schedule can be created to evaluate updates to climate change data, as it pertains to critical aspects of existing operations; or rather proactively when the data is required for a new project or decision-making process.

2.3.4 Managing Uncertainty in Climate Change Data

A great deal of uncertainty surrounds the timing, nature, direction and magnitude of localized climate impacts. It can be a challenge for utilities to navigate such uncertainty when working to address climate change impacts in planning, design and operations of wastewater infrastructure. In particular, it may be difficult to balance climate-related action with current obligations, which requires maintaining service affordability while developing the financial, managerial and technical capacity to meet future needs (EPA, 2015).

While reviewing, compiling or using climate data, practitioners and users of this guidelines should be acutely aware that there are many sources of uncertainty within available climate data. Examples include, but are not necessarily limited to natural variability, scenario uncertainty, and scientific uncertainty attributed to varying future scenarios of greenhouse gas emissions and the imperfect capacity of global climate models. Uncertainty related to natural variability is significant in the short term whereas predictions associated with each emission scenario diverge over the long term, lessening the significance of uncertainty associated with natural variability. Therefore, the relevance of each source of uncertainty depends on the time horizon of interest, and the relative significance of these sources of uncertainty changes with the expected remaining useful life of a policy, program, or asset.

Based on scientific analysis of climate model projections, the IPCC assessed the likelihood of future trends in climate extremes and concluded that globally “*It is very likely that hot extremes, heat waves and heavy precipitation events will become more frequent*” (Solomon et al., 2007). While it is not possible to state with exact certainty how or when climatic conditions will change in the decades to come in Atlantic Canada, it is projected that there will be continued “*increases in the occurrence of heat waves, forest fires, storm-surge flooding, coastal erosion, and other climate-related hazards*” in Atlantic Canada, according to Natural Resources Canada (2007). These regional Atlantic Canada trends and associated levels of uncertainty are consistent with global climate trends.

A table below summarizes the likelihood of future trends for climate extremes in Canada, as per the Institute for Catastrophic Loss Reduction (ICLR, 2012). In this table the user of this guideline can gain a better appreciation of the certainty or uncertainty associated with various projected climate indices and parameters for extreme weather and climate events.

<table>
<thead>
<tr>
<th>Phenomenon and Direction of Trend</th>
<th>Likelihood that trend occurred in 20th Century (Typically Post-1960)</th>
<th>Likelihood of Future Trends for the 21st Century Based on Projections using IPCC Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warmer and fewer cold days and nights over most land areas</td>
<td>Very likely</td>
<td>Virtually Certain</td>
</tr>
<tr>
<td>Warmer and more frequent hot days and nights over most land areas</td>
<td>Very likely</td>
<td>Virtually Certain</td>
</tr>
<tr>
<td>Event</td>
<td>Frequency</td>
<td>Likelihood</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Warmer spells / heat waves: frequency increases over most land areas</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>Heavy precipitation events: frequency increases over most areas</td>
<td></td>
<td>Likely</td>
</tr>
<tr>
<td>Area affected by drought increases</td>
<td>Likely in some regions since 1970s</td>
<td>Likely</td>
</tr>
<tr>
<td>Increased incidence of extreme high sea level (excludes tsunamis)</td>
<td></td>
<td>Likely</td>
</tr>
</tbody>
</table>

Notes: Changes in frequency of coldest and hottest days and nights refer to the coldest or hottest 10%. Extreme high sea level depends on average sea level and on regional weather systems. It is defined here as the highest 1% of hourly values of observed sea level at a station for a given reference period. Changes in observed extreme high sea level closely follow the changes in average sea level.

Models will continue to improve over time, especially as computational capabilities are advanced. However, there is always some uncertainty that is “irreducible”. Some models favor certain processes over others, and therefore the models themselves are a source of uncertainty. Using an ensemble of climate models, is one of the best ways to mitigate the uncertainty in climate projections. This uncertainty is then framed within the presentation of the data plots and graphs, for decision makers to consider when using the climate projections. As previously advised, these data plots and graphs which incorporate uncertainty should be interpreted by a professional trained in climate science and adaptation within the context of infrastructure planning, design and operations.

Note: Managing uncertainty over a broad range of projections is recommended. To implement this into practice, a risk assessment can be used. Such an assessment provides context over the full range of climate projections and assists in determining what future scenario is appropriate for further application(s) such as adaptation planning, resilience assessments, design standards, environmental assessments and long-range planning.

Uncertainty should not prevent wastewater utilities from taking action now with regards to potential climate change impacts. For some utilities, it is not an option to wait and see or take no action. In fact, the cost of inaction may be greatly underestimated and can be offset by taking preventative action today. Building climate considerations into everyday utility decision making is a current necessity because utility investments are often capital intensive, long-lived and can require long lead times to ensure system reliability and maintenance of desired service levels.

2.4 Global and National Climate Change Trends

It has been widely demonstrated and acknowledged that anthropogenic-induced Green House Gas (GHG) emissions are the primary factor contributing to global increases in average temperatures (Bush & Lemmen, 2019). Figure 2.1 depicts the changes of global mean temperature and carbon dioxide emissions (as the main anthropogenic source of global warming) from 1880 to 2017 (NASA GISS, NOAA NCEI, ESRL). Based on this and other analyses, the IPCC in its 2007 full assessment concluded that the “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level.” (Solomon et al 2007).
In the general, the following global trends are widely accepted and anticipated:

- Temperature: One of the key factors driving climate change, and subsequent other climatic variables (e.g. precipitation, humidity, snow, wind etc.), is projected to increase globally by $3.7^\circ \pm 1^\circ$C by the end of 21st century.

- Precipitation: Increases in atmospheric temperature results in more moisture holding capacity (about 7% per each degree Celsius of warming), and consequently results in greater rates of rainfall (i.e. extreme rainfall) (Attema, Loriaux, & Lenderink, 2010; Bush & Lemmen, 2019).

Although more extreme rainfall is projected globally, It does not necessarily mean more flooding in that flooding is a complex system that is dependent on more factors than only rainfall (Sharma, Wasko, & Lettenmaier, 2018). Global temperature increase can also result in longer growing season length, more warm nights and heat waves as well as slightly fewer frost days (Bush & Lemmen, 2019). On the other hand, global warming leads to increase in the number of dry days; however, it does not necessarily mean longer and more frequent droughts because of the same complexity associated with flooding (Bush & Lemmen, 2019).

Relative to global trends, Canada is, on average, warming at twice the global rate (Bush & Lemmen, 2019). Canada’s vast land coverage and wide variety of climates also means that climate changes at varying rates across the country. For example, some impacts from climate change are more pronounced in northern latitudes, relative to Canada’s more populated regions along its southern latitudes. The observed temperature changes over Canada between 1948 and 2016 show a statistically significant increase of 1.7°C Canada-wide and 2.3°C over Northern Canada (Bush, E.; Lemmen, 2019). This spatial variance of climate projections even exists in Atlantic Canada, and must therefore be carefully considered by designers, regulators and operators.

Seasonal temperature has been increasing across Canada for all seasons, although winter has experienced the highest rates of warming, specifically in Northern Canada (Bush, E.; Lemmen, 2019; Li et al., 2018a). Canadian average temperature (over all seasons) is projected to keep increasing to more than 6°C by the end of 2100.
That would bring longer growing season and more cooling degree-days\(^1\) as well as fewer heating degree-days\(^2\). In other words, warm events are projected to become warmer and cold events, less cold (Bush & Lemmen, 2019). Moreover, the Atlantic Ocean Temperature has been increasing for the last century and is projected to continue increasing, where again, winter has the greatest rate of ocean temperature increase (Abeysirigunawardena, Smith, & Taylor, 2011; Agilan, Resources, & 2017, n.d.; Agilan & Umamahesh, 2017; Bush, E.; Lemmen, 2019).

The observed temperature increase in Canada has the causal effect of early springs, projected to start between 0.6-1.6 weeks earlier per decade (depends on the locations) throughout 21\(^{st}\) century. Furthermore, summer time is projected to extend by as much as 2 weeks per decade until late 21\(^{st}\) century (Bush & Lemmen, 2019).

Average annual precipitation varies across Canada from 200mm in the far north to 3000mm on the west coast. Annual mean precipitation has also been increasing in Canada (larger increase over Northern Canada), and is projected to continue increasing during the 21\(^{st}\) century, with the exception of summers where mean precipitation is projected to decrease (specifically over Southern Canada) (Li et al., 2018b; Vincent, Zhang, Mekis, Wan, & Bush, 2018). As noted previously, the frequency and intensity of extreme precipitation is projected to increase over the entire Canada (Bush, E.; Lemmen, 2019; Li et al., 2018a).

Although snow cover is a complex hydroclimatic variable and needs multiple variables to be taken into consideration (Bush & Lemmen, 2019), observations over the past 34 years (1981-2015) have detected a decrease across all of Canada by 5% to 10% across seasons (Brown & Braaten, 1998; Mudryk et al., 2018). Temperature increases are projected with a high level of confidence, and therefore a decrease in overall national snow cover is also highly likely throughout the entire year (winter has the largest decrease notably for southern Canada). On the other hand, maximum seasonal snow water equivalent, which is a measurement of snowpack and defined as the amount of water contained in a snowpack, is projected to decrease cumulatively by 15% to 30% of the baseline over 2020 to 2050; noted that Atlantic Canada and British Columbia are projected to have the greatest decrease in snow water equivalent (Mudryk et al., 2018; Sospedra-Alfonso & Merryfield, 2017).

Sea Ice Concentration’s (SIC) data during 1981-2015 found SIC reduction over Canadian waters throughout the entire seasons (noted that SIC is strongly associated with temperature), with greatest reduction over eastern Canadian waters in winter and spring at a rate of 8% per decade. Due to the strong dependence between temperature and SIC and increase temperature projection, SIC is projected to continue decreasing over entire Canadian waters, notably the Maritimes in winters (Mudryk et al., 2018), as demonstrated by the decreasing ice-pack in the Gulf of Saint Lawrence along the PEI and New Brunswick coastline.

2.5 Projected Climate Change in Atlantic Canada

To indicate the magnitude of changes expected across the Atlantic Region of Canada, the Climate Atlas of Canada (CAC, 2019) published in July 2019 may be consulted. It is anticipated that the Atlas will be updated regularly in the coming years. For the most recent and up-to-date information and data, readers of this manual are referred to the CAR data portal directly.

The Climate Atlas of Canada used 24 statistically downscaled (Bias Correction with Constructed Analogues and Quantile mapping, Version 2; BCCAQv2) Global Climate Models (daily data with spatial resolution of 10*10 km) under Representative Concentration Pathways (RCP hereafter) 4.5 and 8.5 (which show the medium and high emission scenarios, respectively).

\(^1\) An index to measure the need of cooling the buildings
\(^2\) An index to measure the need of heating the buildings
2.5.1 Temperature

According to CAR, Nova Scotia (NS) is the warmest province of Atlantic Canada with annual average temperature of 6.4°C during 1976-2005 (the baseline) followed by Prince Edward Island (PEI) with 5.9°C, New Brunswick (NB) with 4.5°C and Newfoundland and Labrador (NL) with -1°C, respectively. Annual average temperature is projected to increase by 4.3°C (±1.45) in NB, 4.3°C (±1.75) in NL, 3.8°C (±1.5) in NS and 4.2°C (±1.55) in PEI by 2080s under RCP8.5, respectively. The projections show that it is very likely (more than 50% probability) that winter average temperature of NS become above 0°C by 2080s under RCP8.5 (Table 2.1), which results in potential earlier and higher rate of snow melting.

Table 2.1 Historical and Projected (10th percentile) Median (90th percentile) Temperature (°C) of Atlantic Canada

<table>
<thead>
<tr>
<th></th>
<th>New Brunswick</th>
<th>Newfoundland & Labrador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual</td>
<td>4.5</td>
<td>(5.4) 6.6</td>
</tr>
<tr>
<td>Spring</td>
<td>2.9</td>
<td>(2.9) 4.8</td>
</tr>
<tr>
<td>Summer</td>
<td>1.7</td>
<td>(17.5) 19</td>
</tr>
<tr>
<td>Fall</td>
<td>6.7</td>
<td>(7.2) 8.7</td>
</tr>
<tr>
<td>Winter</td>
<td>-8.8</td>
<td>(-8.8) -6.4</td>
</tr>
</tbody>
</table>

Aside from the intensity of extreme events, the frequency of extreme events is projected to increase in Atlantic Canada. The number of tropical nights, which is defined as the annual number of days whose minimum temperature is more than 20°C, has been a rare event in Atlantic Canada that almost never happened in NS, NL and NB. However, the number of tropical nights is projected to increase significantly (except NL) so that PEI is projected to have 22 tropical nights (±17) followed by NS and NB with 11 nights (±11 and ±10) and NL with only 1.5 nights (±1.5) by 2080s, respectively. On the other hand, the number of extremely hot days, which is defined as number of days whose average temperature is more than 30°C, is projected to increase in Atlantic Canada. NB, as the province with the greatest number of extremely hot days (5 days a year) during the baseline, is projected to have 30 (±15) extremely hot days by 2080s, while PEI and NS have experienced 1 extremely hot day annually over the baseline and they are projected to experience 21 (±17) and 16(±13) days by 2080s, respectively. However, the trend of extreme event frequency in NL, with no extremely hot days during baseline, is not as fast as other provinces of Atlantic Canada and NL is projected to have 3(±3) extremely hot days a year by 2080s (Table 2.2).

Table 2.2 Historical and Projected (10th percentile) Median (90th percentile) Tropical Nights, Extremely Hot and Cold Days of Atlantic Canada
Furthermore, timing of the first and last frost of the year is affected by climate change. All Atlantic Provinces except NL have their last frost of spring by the second week of May, while it is projected that the last spring frost will happen 3 weeks earlier (mid-April). NL usually has its last spring frost on the first week of June and it is projected that the last spring frost will happen 3 weeks earlier by 2080s. on the other hand, the first Fall frost that usually occur in the last week of September for NB and NL and the third week of October for NS and PEI, is projected to be delayed for 3 to 4 weeks in Atlantic Canada by 2080s.

2.5.2 Precipitation

Precipitation has been on the rise in Atlantic Canada. For example, winter events of greater than 10 mm precipitation have increased in St. John’s (ICLR, 2012). Looking past 2050, overall changes in precipitation will not be large, with Newfoundland projected to see about a 10% increase in the winter by 2050, while other Atlantic provinces are expected to experience precipitation changes in the 0–10% range. There will be a reduction in snow to a total precipitation ratio of about 10%. Summertime precipitation changes will be generally smaller at 0–5%, with the possibility of decreases in New Brunswick and Prince Edward Island (ICLR, 2012).

The higher temperature projection will technically result in higher humidity and consequently more precipitation. However, the variability in precipitation projection is high. NS is the most precipitated province of Atlantic Canada with average total precipitation of 1328 mm per year during 1976-2005 followed by NB with 1106 mm, PEI with 1089 mm and NL with 937 mm, respectively. The average annual total precipitation is projected to increase by 126mm (±190) in NB, 132mm (±111) in NL, 121mm (±214) in NS and 105mm (±175) in PEI by 2080s under RCP8.5, respectively. The data is indicated in Table 2.3.

Table 2.3 Historical and Projected (10th percentile) Median (90th percentile) Precipitation (mm) of Atlantic Canada

<table>
<thead>
<tr>
<th>Precipitation</th>
<th>New Brunswick</th>
<th>Newfoundland & Labrador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual</td>
<td>1106 (1005)</td>
<td>1178 (1350)</td>
</tr>
<tr>
<td>Spring</td>
<td>262 (202)</td>
<td>281 (365)</td>
</tr>
<tr>
<td>Summer</td>
<td>272 (211)</td>
<td>288 (369)</td>
</tr>
<tr>
<td>Fall</td>
<td>294 (214)</td>
<td>303 (404)</td>
</tr>
<tr>
<td>Winter</td>
<td>278 (220)</td>
<td>306 (390)</td>
</tr>
</tbody>
</table>
Another concern is the projection that the occurrence of freezing rain events in Newfoundland will increase by 50%, with a smaller increase of about 20% projected for the Nova Scotia, New Brunswick and Prince Edward Island areas (ICLR, 2012).

2.5.3 Sea Level Rise

Globally, sea level has risen as demonstrated by very long-term tide gauge records, such as the tide gauge installed in the Halifax Harbour. Sea level is projected to continue to rise, where the rate of sea level rise is also expected to increase. Confidence in the projected amount of global sea-level rise is relatively high and may exceed one metre by 2100. However, relative sea level in different parts of Canada is projected to rise or fall, depending on local vertical land motion. Due to land subsidence, parts of Atlantic Canada are projected to experience relative sea-level change higher than the global average during the coming century (Greenan, B.J.W. et al, 2018).

Where relative sea level is projected to rise (most of the Atlantic and Pacific coasts and the Beaufort coast in the Arctic), the frequency and magnitude of extreme high water-level events will increase (high confidence). This will result in increased flooding, which is expected to lead to infrastructure and ecosystem damage as well as coastline erosion, putting communities at risk. Adaptation actions need to be tailored to local projections of relative sea-level change.

Extreme high water-level events are expected to become larger and occur more often in areas where, and in seasons when, there is increased open water along Canada’s Arctic and Atlantic coasts, as a result of declining sea ice cover, leading to increased wave action and larger storm surges (high confidence). Projected global sea-level rise by 2100 is indicated in Table 2.4.

Table 2.4 Projected global sea-level rise by 2100 (Atkinson et al., 2016)

<table>
<thead>
<tr>
<th>Emission Scenario</th>
<th>Likely Global Sea-Level Rise by 2100 (cm), median [90% uncertainty range]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low (RCP2.6)</td>
<td>44 [28 to 61]</td>
</tr>
<tr>
<td>Medium (RCP4.5)</td>
<td>53 [36 to 71]</td>
</tr>
<tr>
<td>High (RCP8.5)</td>
<td>74 [52 to 98]</td>
</tr>
<tr>
<td>High (RCP8.5 – Atlantic Canada)</td>
<td>87 [75 to 100]</td>
</tr>
</tbody>
</table>

Scenario is indicative, so percentile values (uncertainty range) are not provided.
Note: The Canadian Extreme Water Level Adaptation Tool (CAN-EWLAT) is a science-based planning tool for climate change adaptation of coastal infrastructure related to future water-level extremes and changes in wave climate.

2.5.4 Storm Activity
It is anticipated that by 2050, intense precipitation will increase such that events now having a 20-year return period will occur about every 10 to 15 years, with the metric for Newfoundland being closer to 10 years. Given the impacts of hurricanes, it is of concern that the IPCC (2007) projects an increase in intense tropical cyclone activity. This is a result of warming of ocean temperatures. The risk of more intense hurricanes and winter storms, leading to more intense precipitation, adds to the risks for more flooding, which is already the most frequent disaster event in Atlantic Canada (ICLR, 2012).

2.6 Climate Change Impacts on Wastewater Infrastructure Design
Water is coming under increasing pressure in Atlantic Canada, which has direct impacts on the treatment of water. In some regions, climate change impacts could result in lower water levels and poorer quality water, affecting treatment requirements and capacity for wastewater systems, both of incoming and outgoing flows to a wastewater facility. Infrastructure will need to be robust and resilient to cope with these changing conditions.

In coastal regions, infrastructure will have to withstand more extreme weather and water wear as a result of diminished sea and lake ice. Communities will need to more actively assess their buildings and drinking water supply system layouts, to determine which areas would be vulnerable to coastal flooding and overland flooding, in the case of prolonged heavy rain or high spring flows in a nearby water bodies (AFNESU, 2008). Heavy rains and floods create threats by the sheer volume of extra water that they bring into a community and also by their potential to spread contaminants into water systems.

Older and overextended wastewater infrastructure is likely to be more susceptible to the negative impacts of climate change. As a user of this guideline, one will have to explore opportunities for investments to be rethought and life-cycle costs to be taken into greater consideration. If targeted effectively, new infrastructure investments can significantly improve the long-term resilience of wastewater infrastructure in the face of climate change (J. Boyle, M. Cunningham, J. Dekens, 2013).

This guideline identifies some climate change phenomena which affect the treatment and operation of wastewater systems. The list is meant to serve as an illustration of the variety of climate change parameters, indices and processes, and is not wholly encompassing or inclusive. Climate phenomena have been broadly adopted from AFN, (2008), and can be summarized as:
- Altered Precipitation Quantity, Form and Timing;
- Rising Sea Levels; and
- Water Quality.

2.6.1 Altered Precipitation Quantity, Form, and Timing
In Atlantic Canada, climate science indicates a general trend of heavier or more intensive precipitation from storms, which will invariably increase flood risk, expand flood hazard areas, increase the variability of stream flows, and increase the velocity of water during high flow periods. It should be noted, that on a local scale some regions will see annual precipitation increases while others will see decreases. Predictions about expected frequency of intense storms and flood events still remain inconclusive. Nonetheless, water resource managers will have to account for, and manage, the significant challenges as storm intensity increases and should therefore consider some or all of the following impacts (EPA, 2014 and AFN, 2008 and Lemmen and Warren, 2004):
• Emergency plans for wastewater infrastructure need to recognize the possibility of increased risk of high flow and high velocity events due to intense storms and potential low flow periods;
• Floodplains may expand along major rivers requiring protection or relocation of wastewater infrastructure facilities and coordination with local planning efforts;
• Combined storm and sanitary sewer systems may need to be redesigned because an increase in storm event frequency and intensity can result in more combined sewer overflows causing increased pollutant and pathogen loading to receiving waterbodies, putting new demands on discharge permit and nonpoint pollution programs; and
• Flooding may occur with more frequency due to changing freeze and thaw dates and precipitation form.

Please note the list provided in this guideline is by no means inclusive, and serves to prompt practitioners into identifying potential impacts which may impact their facility or region. Given the variability, practitioners should consider possible changes to precipitation on a community-by-community basis, especially as predictive models do not always agree with each other. It is therefore necessary to consider changes to precipitation on a regional or community level to determine impacts of concern and to develop appropriate adaptation strategies and capacity enhancement measures.

2.6.2 Rising Sea Levels
In Atlantic Canada, depending on location, rising sea levels may shift ocean and estuarine shorelines by inundating lowlands, displacing wetlands, and altering the tidal range in rivers and bays. Storm surges resulting from more extreme weather events will increase the areas subject to periodic inundation. The combination of sea level rise, storm surges, and waterbody movement will affect a range of coastal based water supply and treatment infrastructure and require that a range of management issues be considered, including but not necessarily limited to (EPA, 2014 and AFN, 2008 and Lemmen and Warren, 2004):
• Threats from accelerating coastal erosion patterns and shoreline instability;
• Increased frequency of damage from floods and storm surges;
• Need for watershed-level protection programs to account for changes in natural systems as salinity and pH levels change;
• The range of increases in sea level along Atlantic Canadian Provinces varies between locations, due to localized effects such as land subsidence and glacial re-bound. Localized sea level rise estimates should be obtained;
• Emergency plans for wastewater infrastructure need to account for long-term projections for rising sea levels;
• As sea levels rise and salt water intrudes into freshwater aquifers, affected drinking water systems will need to consider relocating intakes; and
• Wastewater utilities will need to consider hardening facilities against storm surge, protecting facilities with natural or man-made barriers, and relocation of some treatment facilities and discharge outfalls as a result of sea level rise.

These overlapping impacts make protecting water resources in coastal areas especially challenging. Watershed-level planning will need to incorporate an integrated approach to coastal management in light of sea level rise including land use planning, building codes, land acquisition and easements, shoreline protection structures (e.g., seawalls and channels), beach nourishment, wetlands management, and underground injection to control salt water intrusion to fresh water supplies (EPA, 2014).

2.6.3 Water Quality
Throughout Atlantic Canada, warmer air temperatures will result in warmer water. Warmer water holds less dissolved oxygen making instances of low oxygen levels or “hypoxia” more likely; foster harmful algal blooms;
and alter the toxicity of some pollutants EPA (2014). Water resource managers will have to consider some or all of the following impacts (EPA, 2014 and Kundzewicz et. al, 2007):

- Higher water turbidity levels, greater movement of pollutants into watercourses and larger quantities of solid matter requiring filtration;
- Warmer surface water temperatures increasing bacteria and fungi concentrations, algal blooms and increased summer phosphorus concentrations; and
- Increased pollutant concentrations and lower dissolved oxygen levels will result in higher incidences of impaired water quality.

2.6.4 Design Philosophy to Incorporating Climate Change Impacts

Most infrastructure continues to be designed on the basis of historical climate data and assumptions, generally meaning they do not account for an expected increase in frequency and intensity of climate hazards or new climate hazards (J. Boyle, M. Cunningham, J. Dekens, 2013). In this guideline it is suggested to design infrastructure based on both historical and projected climate data. Using both past and future climate data often results in a more comprehensive and resilient design. Though often representing higher upfront costs, investments in more resilient design, such as one that considers a full range of climate projections, can help avoid larger future costs (in terms of maintenance, repair and replacement), and make a project more resilient to future climate and weather extremes.

Note: In this guideline it is suggested to design infrastructure based on both historical and projected climate data. Using both past and future climate data often results in a more comprehensive and resilient design.

For practitioners using this guideline, it is recommended to consider the following tools and techniques for responding and/or adapting to climate change:

- Consider evolving uncertainty in climate projections to balance costs and potential consequences of failure;
- For critical infrastructure, conduct engineering-economic evaluation of costs and benefits of adaptation measures, with emphasis on highest risks to help planning efforts;
- At a designer’s discretion, where applicable, and in consultation with climate scientists, increase the magnitude of design parameters or safety factors;
- Perform a formal risk assessment and carry out risk management;
- Review existing practices and use entirely new solutions;
- Develop contingency plans for infrastructure failure;
- Identify infrastructure that is at risk because of a changing climate and retrofit priority assets;
- Consider increased deterioration rates in design and maintenance plans;
- Design based on the most probable climate condition;
- Consider different climate change scenarios or models for design, maintenance or planning;
- Identify locations that may be vulnerable to climate change impacts and avoid them altogether or modify designs accordingly;
- Include flexibility (no regret design) and/or additional safety factor in the design. Acting on the best-case scenario over the short-term and leaving available space for flexibility in the adaptation or policy to be expanded or build upon at a later time;
- Monitor climate condition and project performance over time. As new information becomes available, and projection models improve, the strategy can be adjusted; and
- Implement design and construction modifications in response to observed changes.

Adaptive capacity is another important concept to consider for users of this manual. The vulnerability of the wastewater sector to climate change is defined by the capacity of the sector to adapt by minimizing adverse impacts and maximizing positive ones (J. Boyle, M. Cunningham, J. Dekens, 2013). This may be difficult to achieve without clear guidance from National building codes and standards (which are anticipated to account
Methodologies presented in codes, standards, and best practices will provide greater insight into the management of uncertainty in the application of climate projections for the design of infrastructures as well as programs and policies.

2.6.5 Defining Extreme Events

Different disciplines have different definition for extreme events. Scientist and engineers agree on the definition of extreme events (e.g. heavy precipitation, droughts and etc.) to some extent; extreme events are defined as unusual/unexplainable events with deviation from the observed normal trend regardless of their consequences (Albelverio, Jentsch, & Kantz, 2006). Extreme events definition slightly varies between climate scientists and engineers; Intergovernmental Panel on Climate Change (IPCC) defines the extreme events as any events whose probability is less than 10% or more than 90% of observed probability density function. However, acceptable frequency of failure defines extreme events for engineers. Based on the purposes of structures, engineers design them for events with Mean Recurrence Interval (MRI) or return period of n years (i.e. Annual Exceedance Probability (AEP) of 1/n). It is important for the user to understand the likelihood of extreme events at a facility site and general climate projections for the region to supplement that information. A literature review is suggested for this task.

2.7 Assessing Climate Change Impacts on Wastewater Infrastructure – CSA

A CSA Group standard, CSA S900.1 - Climate Change Adaptation for Wastewater Treatment Plants has been developed in partnership with the National Research Council of Canada (NRC) to address climate change in existing and new Canadian standards and codes. This Standard is prepared by the CSA Technical Committee (TC) on Wastewater Treatment Plant Design and Construction. The Standard provides owners of wastewater treatment plants (WWTP) with a methodology to assess the impact of climate change on their facilities (Gemin J., Coleman P., Phu K., 2019). Users of this guideline are recommended to adopt CSA S900.1.

The purpose of the assessment, outlined in the Standard, is to raise awareness of how sensitive a system is to changes in climate over time or potential impact of future changes on the social and built environment. The Standard follows an (8) eight-step methodology as summarized by (Gemin J., Coleman P., Phu K., 2019):

Step 1: Define the physical setting: The standard directs the user to place the site in a physical and legal context. Physical setting includes jurisdictional boundaries (e.g., conservation authority, watershed) and environmental features.

Step 2: Define the climate setting: The standard provides a list of primary and secondary climate events that could impact the facility. The standard directs the user to evaluate the historical pattern of the events and then project how they could change in the future. The standard includes information on sources of climate data, as well as on time horizon and scenarios for future climate projections.

Step 3: Define the WWTP context: The standard directs the user to define the WWTP facility through many lenses including process, structural, heating and ventilation, utilities, sewerage system, and effluent discharge.

Step 4: Make WWTP project considerations: In this step the user is guided to develop a list of WWTP components that might be impacted by climate change. The standard provides a list over 50 sample components grouped under eight categories:
- Utilities;
- Location of wastewater treatment plant site;
- Structural elements;
• Plant building elements;
• Liquid process treatment systems;
• Bio-solids process treatment systems;
• Electrical systems; and
• Instruments and control systems.

Step 5: Establish climate-WWTP interactions: The standard directs the user to take the list of climate parameters and the list of WWTP components and identify where they interact.

Step 6: Undertake a risk assessment: Once important interactions are identified, they are given a risk score, determined by multiplying the probability and severity of an interaction. The user may decide to look at past interactions and then look forward at how their occurrence or severity might increase in the future.

Step 7: Determine and evaluate adaptation measures: Adaptation measures are proposed for items with a high-risk score. In some cases, further investigation might be required when a high-risk interaction is found for which there is insufficient data to assess further.

Step 8: Summarize the results of the assessment in a report: A report template and outline is recommended where the user should document the process of risk identification and prioritization. The report provides recommendations where the focus of a climate adaptation effort should be placed going forward.

For further detail and information, the reader of the guideline is referred to CSA S900.1.

2.8 Identifying Climate Risks to Wastewater Infrastructure

Many options exist to address climate change concerns at utilities. When evaluating a response to climate change and assessing potential adaptation strategies, there are several significant issues to be considered such as: deciding which climate information to use, deciding how to incorporate uncertainty, and obtaining a better understanding of system capabilities. A commonly adopted approach to incorporate these concepts into wastewater infrastructure planning, design and operations, is to conduct a comprehensive risk assessment to identify those components or processes which are most at-risk to climate change. Once identified an adaptation plan can be implemented in either the planning, design, or operational phase of an asset. The scope and priority of an adaptation plan depends on the availability of resources to address climate vulnerability of the asset or asset component to a changing climate. Two commonly applied methods to assess climate risk include top-down and bottom-up approaches to climate risk assessment. These methodologies are defined below Gov. AU (2016):

Top-Down Approaches: give information on a broad and all-encompassing range of simulated climate change impacts. This approach emphasises understanding the plausible impacts by attempting to represent different sources of uncertainty throughout the asset’s chain of processes. This approach often starts with generating in-depth climate projections for the location of interest. Outputs from top-down methods may offer limited value when attempting to improve adaptive capacity or resilience to climate change; providing insights mainly into a likely range of impacts rather than on system sensitivities as well as typically ignoring non-climate influences.

Bottom-Up Approaches: bottom-up approaches base their analysis on an understanding of existing pressures and demands on a system; – vulnerabilities to climate change are considered in context with non-climate factors. This approach often starts with generating an inventory of vulnerable asset components or processes, prior to generating specific climate change projections and parameters.

We recommend that users of this guideline adopt a bottom-up approach to climate risk assessment. The bottom-up approach starts with an attempt to identify the nature of climate risks that a system is exposed to.
under current climate. Often analysis considers other aspects that influence system performance, so that climate risks are not assessed in isolation of other demands on the system. With an understanding of what kind of changes to the climate, or under what circumstances the system becomes more vulnerable to climate changes, users can look to output from climate models to assess if there is high confidence in such conditions occurring and subsequently modify behaviour or conditions to alleviate pressures should such climate change eventuate (Gov. AU, 2016). The most common application of top-down climate risk assessment in Canada is the Engineers Canada Public Infrastructure Engineering Vulnerability Committee (PIEVC) Protocol.

The PIEVC Protocol: Systematically reviews historical climate information and projects the nature, severity and probability of future climate changes and events. It also establishes the adaptive capacity of an individual infrastructure as determined by its design, operation and maintenance. It includes an estimate of the severity of climate impacts on the components of the infrastructure (i.e. deterioration, damage or destruction) to enable the identification of higher risk components and the nature of the threat from the climate change impact. This information can be used to make informed engineering judgments on what components require adaptation as well as how to adapt them e.g. design adjustments, changes to operational or maintenance procedures (Engineers Canada, 2020)

To access the PIEVC Protocol, visit: https://pievc.ca/

To apply the PIEVC Protocol the practitioner using this guideline is recommended to access the publicly available PIEVC Protocol resources. Alternatively, for the purposes of this manual, we illustrate a standard seven (7) step process to identify and mitigate climate risk, which has been compiled based on a variety of commonly adopted bottom-up assessment methodologies such as PIEVC or robust decision-making approaches (Lembert and Groves 2010). Broadly the climate risk assessment framework may be summarized in seven (7) steps, as per Figure 2.2:

Step 1: Identify wastewater infrastructure components at the facility of interest.
Step 2: Select infrastructure component for analysis.
Step 3: Combine component attribute with climate projections.
Step 4: Assess climate parameter effects (i.e. vulnerability).
Step 5: Identify risk which is a function of the occurrence probability and impact severity (if it occurs).
Step 6: Impact scoring.
Step 7: Implement the risk mitigation or adaptation plan.

When completing a climate risk assessment, it is recommended to conduct such an assessment with a team of experts consisting of the facility operators (front-line to back office staff), regulators, engineers, planners, climate scientists, and emergency and first aid specialists, where applicable. A diverse team of participants, known as the climate risk assessment team, with specific subject matter expertise are better equipped to conduct a risk assessment, with more thorough and comprehensive outcomes. An overview for climate risk assessment is outlined below, and can be adapted as required. Additional guidance can also be found in PIEVC literature or similar documentation.

Step 1: Identify Wastewater Infrastructure Components at the Facility of Interest:
The first step consists of creating a catalogue of all vulnerable or at-risk infrastructure components at the facility of interest based on past climate events, and perceived future vulnerabilities related to a changing climate. It is recommended to complete this identification process in a workshop setting with experienced operators, engineers and facility managers. Threshold conditions should be catalogued for critical assets, operational components and utility organization systems that may fail or suffer damage when confronted by climate change impacts. Thresholds can be determined through review of event and performance history, modeling of system
performance or inspection of assets. A complete list of components or facility process to assess for climate risk is the typical outcome of such an exercise.

Overflow and capacity targets, as well as level of service targets should be identified at this stage for sewerage infrastructure. These are important to ensuring consistent climate change adaptation practices. When determining and setting these objectives, it is important to consider the following (Ali A., Singh A., 2019):

- The relationship between strategic goals, stakeholder expectations, and business level of service targets;
- Current and future levels of service are defined in measurable terms and are being tracked through specified performance measures;
- The risks for not meeting desired levels of service have been considered; and
- Costs for current and future levels of service options are recorded.

Figure 2.2 Bottom-up Climate Risk Assessment Framework

Step 2: Select Infrastructure Component for Analysis
The next step in the process is to select, not necessarily in sequential order, a partical infrastructure component or processes from the compiled list generated in Step 1, for assessment. If desired, these can be ranked and assessed based on operational thresholds or the severity of consequences as a result of failure.

Step 3: Combine Component Attribute with Climate Projections

This step combines climate projections supplied by a climate scientist or climate analyst, with the operational process of the selected infrastructure component or processes. Practitioners are cautioned that proper application of climate data can be a complex process which requires interpretation of results and characterization of uncertainty. Typically, engineers, planners, policy makers, and operators are already well equipped to deal with uncertainty by the very nature of their occupation. Weather variability and extreme weather unpredictability is a fact that these groups have learned to accept and respond to appropriately. Using risk assessment as a decision-making process in the face of unknowns is no new concept. Making decisions based on projections for long-term climate changes can be approached in the same manner.

A team with climate projection expertise can filter the sometimes overwhelming volume of available climate information down to a useable short list of information that must be considered in the decision making process. If the current climate is used, there is a high risk that the infrastructure will be undersized and it will not provide the desired level of service in the future climate. The initial cost would be low (e.g. the pipes would be smaller and therefore less expensive). If the high future climate is used, there is a low risk that the infrastructure will not provide the desired level of service. The initial cost would be high: the infrastructure may be overdesigned and the solution may be cost-prohibitive. The moderate future climate would result in a medium risk of failure, and the initial cost would also be medium (Ali A., Singh A., 2019). Ultimately the owner’s tolerance for risk will play a central role in how uncertainty is dealt with, along with other non-climatic considerations such as economic, political, and social influences.

Typically, decisions are not made solely on climate projection information alone. If an interaction between the selected infrastructure component or process and changes in climate is found to exist and be of significance, then a risk assessment is necessary and the climate parameter effects should be studied in greater detail (step 4). If the interaction between the selected infrastructure components or processes and the changes in climate are found to be negligible, then the assessor can return to step 2 and select the next component or process. This process is repeated until all components or processes identified by the climate risk assessment team have been considered.

Step 4: Assess Climate Parameter Effects and Vulnerability

To ensure that climate projection data and plots are interpreted properly, and to allow for informed decision making, it is beneficial for a climate or impact scientist with familiarity in the climate projection field to participate in the both the climate effects and risk assessment process.

The selection of the appropriate climate scenario to use for infrastructure planning and design is summarized in Figure 2.3. The future climate indices and parameters to use for infrastructure planning and design will vary depending on the type of infrastructure (temporary, minor, or major) and the design life of the infrastructure.
Designing for climate change adaptation will result in differing future climate scenarios for different infrastructure, and there is no "one size fits all" solution (Ali A., Singh A., 2019).

Figure 2.3 Selection of Future Climate Scenarios

As part of the process the assessor has to identify climatic vulnerability of the selected asset component or process. Climate vulnerability is the degree to which a system is affected, either adversely or beneficially, by climate stressors. The vulnerability assessment considers the degree to which an infrastructure asset is affected when exposed, for example increased rainfall due to climate change. Vulnerability can be measured in terms of the consequences associated with failure of an asset. In some instances, the consequences can be very specific and defined for each sub-component of a large infrastructure system. There are several categories of consequences to consider Ali A., Singh A., (2019):

- **Asset Damage**: Damage requiring minor restoration or repair may be considered minor while permanent damage or complete loss of an asset would be considered to be a significantly higher consequence.
- **Financial Loss**: Costs related to third party damages (e.g. basement backups), environmental clean-up / fines and repair / rehab of infrastructure.
- **Loss of Service**: Meeting demand, conveyance and overflow targets.
- **Health and Safety**: A system serving a large number of people would be of major consequence compared to a system serving a smaller number. Casualties or other acute public health consequences would weigh more heavily.
- **Reputation**: Loss of service, health or environmental impacts may affect the reputation of the responsible agency.

Hazard mapping is a valuable tool for understanding vulnerability to climate change. Hazard mapping integrates multiple types of information. Climate change data, hydrologic and hydraulic models, sewerage and stormwater collection capacity data, and operational data provide information regarding hazards (e.g. flooding, combined sewer overflows, etc.). The locations of sensitive areas (e.g. schools, ecologically sensitive areas) are also included in the hazard mapping, which then provides a visual summary of the interactions and interdependencies between infrastructure and facilities. It is recommended to use such tools when conducting a climate vulnerability and impacts assessment.

Step 5: Identify Risk which is a Function of the Occurrence Probability and Impact Severity (if it occurs)
With a better understanding of the climatic vulnerability of the selected asset component or process, and an appreciation for the effects in event a failure, a risk assessment can be conducted. General risk can be defined as the severity (or consequence) of impacts and probability (or likelihood) of an event occurring. These processes can be numerically defined, as per
Figure and an impact score generated. It is recommended to complete this scoring exercise in a workshop setting with facility operators (front-line to back office staff), regulators, engineers, planners, climate scientists, and emergency and first aid specialists, where applicable. Multi-disciplinary attendance at round table discussions and expert guidance by climate service providers in the assignment of probability, will help to ensure that both the strengths and limitations in the climate information are properly accounted for in scoring. The scoring system can be adjusted and tailored to a specific site or process on a case-by-case basis, as long as it remains consistent throughout the entire assessment.

The risk analysis will categorize each infrastructure asset according to risk levels. Risk based planning focuses on minimizing the risk associated with the asset through an appropriate intervention strategy, while ensuring that any risks are managed at the minimum cost. Risk management is about finding the "sweet spot" between expected value and risk tolerance levels. For example, one would be taking excessive risk by choosing to upsize little or no pipes within a system to plan for surcharging, while one would be taking insufficient risk if they decided to upsize all pipes within a system (Ali A., Singh A., 2019). Figure 2.4 indicates a Sample risk threshold map.

![Figure 2.4 Sample Risk Threshold Map](image)

Step 6: Impact Score
Step 5 will generate a long list of risk scores. Scoring on a numeric scale allows for a quantitative comparison of various climate impacts to determine a priority for the implementation or adaptation. The level of risk of an infrastructure asset will determine its priority for adaptation. For infrastructure that is categorized as an extreme risk, adaptation measures should be implemented immediately (Ali A., Singh A., 2019). As the level of risk decreases, adaptation measures also decrease. Low risk infrastructure should be maintained by the current programs and strategies (i.e. the status quo). Those with low risk or importance can be discarded, while other, higher scores may require a risk mitigation or adaptation plan. This is addressed in Step 7. If the selected asset component or process is discarded due to a low score, the process can return to step 2 and the next asset component or process can be assessed.

Step 7: Implement the Risk Mitigation or Adaptation Plan
Results from a risk assessment can be used to identify options that reduce system vulnerabilities. Adaptation options can be implemented to reduce potential consequences to operations and infrastructure. In addition to reducing risk, options should also be considered with respect to (1) current utility improvement plans and priorities and (2) current and projected available resources. For example, if assessments indicate high risk to coastal outfalls and pumps from flooding, then options to mitigate flood damage should be considered with respect to overall infrastructure planning and general system updates.

ACWWA Wastewater Guidelines Draft 2, March 2020

40
Selecting the right adaptation measures can be determined by the level of risk of the asset, a cost-benefit analysis as well as by examining individual capabilities and resourcing. There are three approaches for climate change adaptation that can be adopted for sewerage and drainage infrastructure planning and design under climate change uncertainties. The three approaches are (Ali A., Singh A., 2019):

- **Do Nothing/Business as Usual**: This approach does not consider climate change, and continues to plan and design infrastructure for the current climate.
- **Middle of the Road**: This approach uses the most likely future climate scenario.
- **Worst-Case**: This approach uses the extreme future climate scenario.

There are applications where all three scenarios are appropriate for infrastructure planning and design. For instance, the "Do nothing" approach is appropriate for temporary infrastructure, infrastructure near the end of its design life, or minor infrastructure repairs requiring immediate attention but a major upgrade is already scheduled in the near future. The "Worst-case" approach is appropriate for infrastructure where the consequences of failure/loss of service are catastrophic (i.e. major infrastructure). The "Middle of the road" approach is appropriate for the remaining categories of infrastructure. This approach balances the risk of failure with the initial cost and is the recommended approach.

The design life of the infrastructure is also an important consideration for infrastructure planning and design. For example, future climate IDF curves increase from the 2050 to the 2100 time horizon. The design life of an infrastructure should be used to select the time horizon for the analysis. When the end of the design life is before 2050, the 2050 time horizon is appropriate. If the design life ends between 2050 and 2100, there are two options for selecting the time horizon (Ali A., Singh A., 2019):

- Use the closer time horizon (2050 or 2100) if the design life ends near one of the time horizons; or,
- Interpolate between the 2050 and 2100 time horizons if the design life ends near the midpoint between the two time horizons.

Following the design and implementation of any adaptation plan, utilities are encouraged to monitor conditions, compare results to projections and reassess both risk and adaptation options as new information becomes available. Monitoring should include remaining aware of new climate information and tools as they become available.

2.9 Adaptation to Climate Change in Wastewater Infrastructure

The following section provides practitioners and users of this guideline with some general recommendations and advice for adaptation measures for wastewater infrastructure. The user of this guideline is encouraged to develop project and site-specific adaptation strategies identified through a risk assessment process, as described in Section 1.8.

2.9.1 Adaptation Strategies

Adaptation strategies will most likely be a combination of both reactive and proactive responses. In the case of wastewater facilities, a proactive adaptation can incorporate climate change foresight into general required infrastructure planning, design and operations. There are generally three (3) water-related project areas requiring implementation of proactive, ‘no regrets’-type approaches (Bruce et al., 2000; Koonce and Hobbs 1994; Regier, 1993; Environment Canada, 1992; Environment Canada, 1996):

- **Watershed stewardship**: this involves source water protection, and is an essential starting place to ensuring ongoing vitality of water. This approach requires water conservation measures by all users and expanded efforts at water quality protection from agricultural, industrial and human wastes.
- **Wastewater treatment facilities**: Strength and flexibility should be planned into new structures. These plans should include a greater emphasis on planning and preparedness for droughts and severe floods.
• Water governance plans: Development of informed watershed governance and management strategies, supported by the renewal of national (federal-provincial) monitoring efforts for water quantity and quality and improved procedures for fair allocation of water within basins, provinces, and between jurisdictions, taking in-stream ecosystem needs into account.

Once a range of possible adaptation options has been identified, the operator (or user of this guideline) should prioritize a shortlist of the most appropriate options for implementation. This is similar to the approach outlined in Section 1.8 of this guideline. As part of this process, it is recommended that the user of this guideline develop a cost-benefit analysis as a form of economic evaluation, and a multi-criteria analysis where costing is difficult to quantify.

• **Cost-Benefit Analysis:** Quantifies and assesses intervention costs against economic benefits such as improved safety and reduced risk of service disruptions to enable selection of the "best" option to close a performance gap. Lifecycle cost-benefit analysis is used to determine the set of investments with the lowest Net Present Value (NPV) or other financial parameter over the analysis period.

• **Multi-Criteria Analysis:** Prioritizes competing treatment options where benefits and costs are less tangible to define. A number of criteria are selected that align with climate change objectives. A weighting to demonstrate the relative importance of these factors is selected from an overall score.

After adaptation projects, design modifications or revised operating and maintenance procedures have been shortlisted, it is recommended to develop a business case for climate change adaptation. Once the business case is developed, a spending program can be initiated which addresses all risks associated with stormwater, sanitary and combined sewer systems. To summarize, in order to develop a business case for climate change adaptation projects, one should (Ali A., Singh A., 2019):

• **Evaluate Short- and Long-Term Needs:** From a climate change planning perspective, compile all projects within the capital programming timing horizon, organized around the funding allocation categories.

• **Analyze Impact of Available Funding:** Demonstrate the impact of funding on risk reduction.

• **Formulate a Works Program:** Combine the optimized treatments and other analysis results into a program of climate change projects

2.10 Key Climate Change Indices and Parameters for Consideration

There are many climate parameters and indices that can be considered in climate change adaptation. For the purposes of this guideline, we have compiled a list of parameters for consideration when planning, designing or operating wastewater infrastructure. In the CSA Group standard, CSA S900.1 - Climate Change Adaptation for Wastewater Treatment Plants, the following parameters are considered at a minimum:

<table>
<thead>
<tr>
<th>Climate Parameters</th>
<th>Secondary Implications Influenced By Climate Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Blizzard;</td>
<td>1. Flooding;</td>
</tr>
<tr>
<td>2. Fog;</td>
<td>2. Invasive Species;</td>
</tr>
<tr>
<td>3. Hurricane/Tropical Storm;</td>
<td>3. Change in Water Characteristics;</td>
</tr>
<tr>
<td>4. Cold Wave;</td>
<td>4. Sea Level Rise;</td>
</tr>
<tr>
<td>5. Hail;</td>
<td>5. Groundwater Elevation Changes;</td>
</tr>
<tr>
<td>6. Ice Storm;</td>
<td>6. Storm Surges;</td>
</tr>
<tr>
<td>7. Cooling Degree Days;</td>
<td>7. Permafrost;</td>
</tr>
<tr>
<td>8. High Temperature;</td>
<td>8. Watercourse/Waterbody Elevation Changes;</td>
</tr>
<tr>
<td>9. Lightning;</td>
<td>9. Wildfire; and</td>
</tr>
</tbody>
</table>
11. High Wind;
12. Low Temperature;
13. Drought;
14. Heat Wave;
15. Snow Accumulation;
16. Freeze/Thaw;
17. Heating Degree Days;
18. Tornado;
19. Freezing Rain;
20. Intense Rain; and

From these parameters the following can be considered as essential information for practitioners:
- Temperature (several sub-parameters);
- Precipitation (several sub-parameters);
- Days with maximum temperature (several thresholds);
- Days with minimum temperature (several thresholds);
- Days with rainfall (several thresholds);
- Days with snowfall (several thresholds);
- Days with precipitation (several thresholds);
- Days with snow depth (several thresholds);
- Wind (several sub-parameters);
- Degree days (several thresholds);
- Bright sunshine (extreme);
- Humidex (several thresholds);
- Wind chill (several thresholds);
- Humidity;
- Pressure;
- Visibility (hours with);
- Cloud amount (hours with); and
- Frost-free (several thresholds).

2.11 Sources of Climate Data
The following section provides practitioners and users of this guideline with some sources of publicly available climate data which can be readily accessed and is known to be quality controlled and regularly updated by Federal and Provincial Governments, as well as national and international academic institutions and research groups. The users of this guideline are reminded that as models continue to resolve a higher number of processes more accurately; new datasets, better post-processing of climate projections, and new data portals will become available.

It is encouraged for practitioners using this guideline to maintain awareness of evolution in climate data and science, and if possible, regularly review newly distributed climate change data. Practitioners are encouraged to regularly engage with climate change scientists or professionals, and to collaborate with such experts when responding to new risks and opportunities during the adaptation planning process, from preliminary stages through to operations.
2.11.1 Climate Risk Atlas of Canada

The Climate Atlas of Canada was created by the Prairie Climate Centre at the University of Winnipeg. It is an innovative climate science and communications tool that allows users to visualize and interact with climate data as well from coast to coast to coast. The atlas uses 24 global climate models. These models have been downscaled to a fine local scale by the Pacific Climate Impacts Consortium (PCIC). Importantly, this 24-model ensemble was created using statistical techniques that preserve daily patterns in the global climate models.

PCIC has provided downscaled projections of daily temperature and precipitation data from 24 climate models using two carbon emission scenarios. The Atlas uses PCIC’s statistically downscaled data (Bias Correction with Constructed Analogues and Quantile mapping, Version 2; BCCAQv2) derived from 24 CMIP5 global climate models (the complete list of models can be found below), for two emissions scenarios (RCP4.5 and RCP8.5). We call the RCP4.5 and RCP8.5 the “Low Carbon” and “High Carbon” scenarios, respectively.

For each model/scenario the PCIC dataset provides daily temperatures (maximum and minimum) and total precipitation at a 10 km x 10 km resolution for all of Canada, for the period 1950-2100. For each model, the simulations for 1950-2005 are the same for both emissions scenarios (RCP4.5 and RCP8.5). The divergent emissions scenarios were used by the models starting in 2006. That is, starting in 2006 the model outputs for the two RCPs begin to differ. Climate projections are provided for two future 30-year periods (2021-2050 and 2051-2080) and a baseline period (1976-2005). Unless otherwise stated, the maps and data presented are the averages of the 24 models.

The Climate Risk Atlas can be accessed at: https://climateatlas.ca/

2.11.2 Canadian Centre for Climate Modelling and Analysis

The Canadian Centre for Climate Modelling and Analysis (CCCma), a section of the Climate Research Division, develops and applies computer models of the climate system to simulate global and Canadian climate, and to predict changes on seasonal to centennial timescales. Analysis of these simulations, together with observations, is used to provide science-based quantitative information to inform climate change adaptation and mitigation in Canada and internationally, and to improve our understanding of the climate system. Notably, CCCma develops the modelling system used to produce seasonal forecasts operationally by Environment and Climate Change Canada, and carries out climate model experiments coordinated by the World Climate Research Programme (WCRP) in support of the Intergovernmental Panel on Climate Change (IPCC).

Data from the Canadian Centre for Climate Modelling and Analysis can be accessed at: https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/modeling-projections-analysis/centre-modelling-analysis.html

2.11.3 The Intergovernmental Panel on Climate Change (IPCC)

The Intergovernmental Panel on Climate Change (IPCC) is the United Nations body for assessing the science related to climate change. Practitioners can access the IPCC Data Distribution Centre (DDC). The DDC provides climate, socio-economic and environmental data, both from the past and also in scenarios projected into the future. Technical guidelines on the selection and use of different types of data and scenarios in research and assessment are also provided. The DDC is designed primarily for climate change researchers, but materials contained on the site may also be of interest to educators, governmental and non-governmental organisations, and the general public.

The DDC is overseen by the IPCC Task Group on Data Support for Climate Change Assessments (TG-DATA) and jointly managed by the Centre for Environmental Data Analysis (CEDA) in the United Kingdom, the ICSU World Data Center Climate (WDCC) in Germany, and the Center for International Earth Science Information Network...
The DDC provides five (5) main types of data and guidance. These are:

1. Climate estimates from observations:
 - IPCC provides a climate datasets from 1961-1990 with mean monthly data over global land areas for nine variables on a 0.5º latitude/longitude grid, together with decadal anomalies from this mean for the period 1901-1995.

2. Global climate model data:
 - IPCC provides global climate model data at a range of frequencies or as climatologies. Data is held for climate model projections used as input to the Second, Third, Fourth and Fifth IPCC Assessment Reports. The climatologies of climate model projections can be viewed through the DDC visualization service.

3. Socio-economic data and scenarios:
 - Socio-economic data and scenarios are important for characterizing the vulnerability and adaptive capacity of social and economic systems in relation to global and regional climate change. The DDC provides access to baseline and scenario data related to population, economic development, technology and natural resources for use in climate impact assessments. The reference data include country and regional level indicators of socio-economic and resource variables. The scenario data supplied extend to 2100 and are based on the assumptions underlying the set of emissions scenarios developed for the IPCC.

4. Data and scenarios for other environmental changes:
 - Some data and information for other environmental changes is also included in the site. These include data on global mean CO2 concentration, global and regional sea-level rise, regional ground-level ozone concentration, sulphate aerosol concentration and sulphur deposition. Detailed documentation and guidance is also provided for the use of these data.

5. Linked data resources:
 - The DDC also provides links to datasets which have been reviewed and pass a set of linking criteria.

Information regarding the data generated by the Intergovernmental Panel on Climate Change (IPCC) can be accessed at: https://www.ipcc.ch/data/

The Data Distribution Centre portal can be accessed at: http://www.ipcc-data.org/

2.11.4 Canadian Institute for Catastrophic Loss Reduction
The Institute for Catastrophic Loss Reduction (ICLR) is a Canadian based centre for multi-disciplinary disaster prevention research and communication. ICLR was established by Canada’s property and casualty (P&C) insurance industry as an independent, not-for-profit research institute affiliated with Western University. Institute staff and research associates are international leaders in wind and seismic engineering, atmospheric science, risk perception, hydrology, economics, geography, health sciences, public policy and a number of other disciplines. The ICLR web-portal is regularly updated with the latest research, reports and data related to infrastructure vulnerability and climate adaptation solutions including wastewater infrastructure.

The ICLR web-portal can be accessed here: https://www.iclr.org/

2.11.5 Canadian Extreme Water Level Adaptation Tool (CAN-EWLAT)
Extreme water levels along Canadian coastlines are a result of a combination of storm surge, tides, and ocean waves. Future projections of climate change in the marine environment indicate that rising sea level and
declining sea ice will cause changes in extreme water levels, which will impact Canada’s coastlines and the infrastructure in these areas. Understanding these changes is essential for developing adaptation strategies that can minimize the harmful effects that may result.

CAN-EWLAT is a science-based planning tool for climate change adaptation of coastal infrastructure related to future water-level extremes and changes in wave climate. The tool includes two main components:

1. Vertical allowance; and
2. Wave climate.

CAN-EWLAT was developed primarily for DFO Small Craft Harbours (SCH) locations, but it should prove useful for coastal planners dealing with infrastructure along Canada’s ocean coastlines.

Canadian Extreme Water Level Adaptation Tool (CAN-EWLAT) can be accessed here:

2.12 References

Assembly of First Nations (AFN), 2008, Climate Change and Water: Impacts and Adaptations for First Nations Communities, Funded by Natural Resources Canada: Climate Change Impacts and Adaptation Program (CCIAP), Environmental Stewardship Unit, March 2008

Future Snowpack Variability over the Northern Hemisphere in the Second Generation Canadian Earth System Model. Journal of Climate, 30(12), 4633–4656. https://doi.org/10.1175/JCLI-D-16-0612.1

Health Canada (2005), “Your Health and a Changing Climate: Information for Health Professionals”.

Chapter 3 Design of Wastewater Sewers

3.1 Type of Wastewater Collection Systems

3.2 Design Capacity Considerations

3.3 Hydraulic Design

3.3.1 Wastewater Flows

3.3.2 Extraneous Wastewater Flows

3.3.2.1 Inflow

3.3.2.2 Infiltration

3.3.2.3 Extraneous Flow Allowances

3.3.3 Domestic Wastewater Flows

3.3.4 Commercial and Institutional Sewage Flows

3.3.4.1 Flow Variation

3.3.4.2 Flow Equivalent

3.3.4.3 Individual Flow Rate

3.3.4.4 Peak Factor

3.3.5 Industrial Wastewater Flows

3.3.5.1 Flow Variation

3.3.5.2 Flow Rate

3.3.5.3 Flow Allowances

3.3.6 Combined Sewer Interceptors

3.3.6.1 Combined Sewer Overflows

3.3.6.1.1 CSO Control Methods

3.3.6.1.2 Treatment for Combined Sewer Overflows

3.4 Details of Design and Construction

3.4.1 Sewer Capacity

3.4.2 Pressure Pipes

3.4.3 Minimum Pipe Size

3.4.4 Depth

3.4.5 Slope

3.4.5.1 Minimum Slopes

3.4.5.2 Increased Slopes

3.4.5.3 Reduced Slopes

3.4.5.4 High Velocity Protection

3.4.5.5 Steep Slope Protection
3.4.6 Alignment ... 60
3.4.7 Curvilinear Sewers .. 61
3.4.8 Changes in Pipe Size ... 61
3.4.9 Allowance for Hydraulic Losses at Sewer Manholes ... 61
3.4.10 Sewer Services ... 62
3.4.11 Sulphide Generation ... 62
3.4.12 Materials ... 62
3.4.13 Metering and Sampling .. 62
3.5 Installation Does this belong in a Design Guideline? ... 62
3.5.1 Standards .. 62
 3.5.1.1 Trenching .. 62
 3.5.1.2 Foundation .. 63
 3.5.1.3 Bedding ... 63
 3.5.1.4 Haunching ... 63
 3.5.1.5 Initial Backfill .. 63
 3.5.1.6 Final Backfill .. 63
 3.5.1.7 Borrow Materials .. 63
 3.5.1.8 Deflection test .. 64
3.5.2 Joints ... 64
3.6 Sewer Rehabilitation Methods .. 64
 3.6.1 Sewer Replacement .. 64
 3.6.2 Sewer Relining .. 64
 3.6.3 Lining and Slip Lining .. 64
 3.6.4 Inversion Lining .. 65
 3.6.5 Sewer Sealing .. 65
 3.6.6 Service Lateral Rehabilitation ... 65
3.7 Inflow Control .. 65
 3.7.1 Manholes .. 65
 3.7.2 Catch Basins ... 66
 3.7.3 Roof Drain ... 66
 3.7.4 Other ... 66
3.8 Directional Drilling ... 66
3.9 Manholes ... 66
 3.9.1 Location .. 66
3.9.2 Spacing ... 66
3.9.3 Minimum Diameter .. 66
3.9.4 Drop Manholes ... 67
3.9.5 Manhole Depth ... 67
3.9.6 Pipe Connections ... 67
3.9.7 Frost Lugs .. 67
3.9.8 Frame and Cover .. 67
3.9.9 Watertightness ... 67
3.9.10 Flow Channel and Benching ... 67
 3.9.10.1 Small Pipe Channel ... 67
 3.9.10.2 Large Pipe Channel ... 68
 3.9.10.3 Bench Area ... 68
 3.9.10.4 Bench Slope .. 68
3.9.11 Corrosion Protection .. 68
3.10 Testing and Inspection This section belong in Design Guidelines ?? .. 68
 3.10.1 General ... 68
 3.10.2 Exfiltration Test .. 68
 3.10.3 Infiltration Test ... 68
 3.10.4 Allowable Leakage .. 69
 3.10.5 Low Pressure Air Testing .. 69
 3.10.6 Allowable Time for Air Pressure Decrease ... 69
 3.10.7 Sewer Inspection .. 70
 3.10.7.1 Video Inspection ... 70
 3.10.7.2 Inspection Record ... 70
 3.10.7.3 Record Content .. 70
3.11 Inverted Siphons .. 70
3.12 Protection of Water Supplies .. 70
 3.12.1 Water-Sewer Cross Connections .. 70
 3.12.2 Relation to Water Works Structures .. 70
 3.12.3.1 Horizontal and Vertical Separation .. 71
 3.12.3.2 Crossings ... 71
 3.12.3.3 Special Conditions .. 71
 3.12.3.4 Warning/Marker and Detection Tape .. 71
3.13 Sewers in Relation to Watercourses ... 71
 3.13.1 Location of Sewers in Relation to Watercourses ... 71
 3.13.1.1 Cover Depth .. 71
 3.13.1.2 Horizontal Location ... 72
 3.13.1.3 Structures ... 72
 3.13.1.4 Alignment .. 72
 3.13.2 Construction .. 72
 3.13.2.1 Materials ... 72
 3.13.2.2 Siltation and Erosion .. 72
 3.14 Aerial Crossings ... 72
 3.15 Trenchless Construction ... 72
 3.16 Alternative Wastewater Collection Systems .. 73
 3.16.1 Small Diameter Gravity Sewers ... 73
 3.16.1.1 House Connections ... 73
 3.16.1.2 Septic Tanks .. 73
 3.16.1.3 Service Laterals .. 73
 3.16.1.4 Collector Mains .. 73
 3.16.1.5 Cleanouts and Vents .. 73
 3.16.1.6 Lift Stations ... 74
 3.16.1.7 Design Criteria ... 74
 3.16.1.8 Monitoring ... 74
 3.16.2 Small Diameter Pressure Sewers (SDPS) ... 74
 3.16.2.1 Grinder Pump System ... 75
 3.16.2.2 Septic Tank Effluent Pump (STEP) System .. 75
 3.16.2.3 Design Criteria ... 75
 3.16.2.4 Monitoring ... 76
 3.16.2.5 System Layout .. 76
 3.16.2.5.1 Population Density ... 76
 3.16.2.5.2 Ground Slopes ... 76
 3.16.2.5.3 Subsurface Obstacles ... 76
 3.16.3 Detailed Design Guidelines ... 77
Chapter 3 Design of Wastewater Sewers

CSA W204:19 Flood resilient design of new residential communities (Jan 2020) should be referenced when designing wastewater sewers.

3.1 Type of Wastewater Collection Systems
In general, and except for special circumstances, the regulator will approve plans for new systems or extensions only when designed upon a separate sewer basis, in which precipitation from roofs, streets and other areas and groundwater from foundation drains are excluded. Overflows from intercepting sewers fall under the national wastewater standards provided in the Wastewater Systems Effluent Regulations (WSER) under the Fisheries Act. Under WSER, the discharge of sanitary and/or combined sanitary and storm water is considered a deleterious substance. As such, overflows due to development are not permitted to increase in frequency, volume or duration unless this occurs as part of an approved long-term management plan. Otherwise provision shall be made for treating the overflow.

3.2 Design Capacity Considerations
In general, wastewater systems should be designed for the estimated ultimate tributary population, except in considering parts of the systems that can be readily increased in capacity. Similarly, consideration should be given to the maximum anticipated capacity requirements of institutions, industrial parks, etc.

In determining the required capacities of wastewater sewers, the following factors should be considered:
- Maximum hourly domestic wastewater volume;
- Additional maximum wastewater volume from industrial plants;
- Inflow and groundwater infiltration;
- Tidal infiltration;
- Climate change impact;
- Topography of area;
- Location of wastewater treatment plant;
- Depth of excavation; and
- Pumping requirements.

The basis of design for all sewer projects shall accompany the documents.

3.3 Hydraulic Design
3.3.1 Wastewater Flows
Wastewater flows are made up of waste discharges from residential, commercial, institutional and industrial establishments, as well as extraneous non-waste flow contributions such as groundwater and surface runoff entering the wastewater collection system. Whenever practical, flow monitoring should be conducted to determine hydraulic requirements. In the absence of flow monitoring data, the design should consider the methodology provided in the following sections.
3.3.2 Extraneous Wastewater Flows

3.3.2.1 Inflow
When designing sanitary wastewater systems, allowances must be made for the leakage of groundwater into the sewers and building sewer connections (infiltration), and for other extraneous water entering the sewers from such sources as leakage through manhole covers, foundation drains, roof down spouts, etc. (inflow).

Due to the extremely high peak flows that can result from roof down spouts, they should not, in any circumstances, be connected directly, or indirectly via foundation drains, to sanitary wastewater sewers. Similarly, the connection of foundation drains to sanitary sewers should not be permitted. Studies have shown that flows from this source can result in gross overloading of wastewater sewers, pumping stations and wastewater treatment plants for extended periods of time. It is recommended that foundation drainage be directed either to the surface of the ground, a storm sewer system, if one exists, or a subsurface infiltration field or chamber if applicable.

3.3.2.2 Infiltration
The amount of groundwater leakage directly into the sewer system (infiltration) will vary with the age of the system, quality of construction, type of joints, ground conditions, level of groundwater in relation to pipe, etc. Although such infiltration can be reduced by proper design and construction, it cannot be completely eliminated and an allowance must be made in the design to accommodate infiltration. Despite the fact that these allowances are generally referred to as infiltration allowances, they are intended to cover the peak extraneous flows from all sources likely to contribute non-waste flows to the wastewater sewer system. The infiltration allowances used for wastewater sewer design, however, should not be confused with leakage limits used for acceptance testing following construction. The latter allowances are significantly lower and apply to a wastewater sewer system when the system is new and generally without the private property portions of the building sewers constructed.

3.3.2.3 Extraneous Flow Allowances
In computing the total peak flow rates for design of sanitary sewers, the designer should include allowances as specified below to account for flow from extraneous sources.

General Inflow/Infiltration Allowance
A general inflow/infiltration allowance based on either area or length and diameter of pipe should be applied, irrespective of land use classification, to account for wet-weather inflow to manholes not located in street sags and for infiltration flow into pipes and manholes. In addition, a separate allowance for inflow to manholes located in street sags and for climate change impacts should be added as per the next section.
- The area allowance should be a minimum of 0.3 l/sec per gross hectare.
- The length and diameter of pipe allowance ranges from 24 to 48 m3/cm of pipe diameter/km length of pipe/day.

Manholes in Sag Locations
When sanitary sewer manholes are located within roadway sags or other low areas, and are thus subject to inundation during major rainfall events, the sanitary design peak flow rate should be increased by 0.4 l/sec for each such manhole. For new construction, all sanitary manholes and grade rings in sag locations are to be waterproofed and should be fitted with lid seals.

For planning purposes and downstream system design, where specific requirements for an area are unknown, the designer should make a conservative estimate of the number of such manholes which may be installed in
the contributing area based on the nature of the anticipated development, and include an appropriate allowance in the design.

Climate Change Allowance
Climate change parameters such as an increase in volume and intensity of extreme precipitation, will have a direct effect on the quantity of infiltration/inflow flows. Localized flooding events have the potential to increase the number of manholes that could be considered to be in a low lying or “sag” location. Additional design considerations should be given for wastewater systems in coastal areas where sea level rise and storm surges have the potential to increase inflow into wastewater systems. Where installations in these areas cannot be avoided, designers should consider all structures to be low lying.

3.3.3 Domestic Wastewater Flows
In the absence of conducting flow monitoring to determine actual flow rates, the following criteria can be used in determining peak wastewater flows from residential areas, including single and multiple housing, mobile home parks, etc.:
- Design population derived from drainage area and expected maximum population over the design period;
- Average daily domestic flow (exclusive of extraneous flows) of 340 l/cap-d;
- Peak extraneous flow (including peak infiltration and peak inflow); and
- Peak domestic wastewater flows to be calculated by the following equation:

\[
Q(d) = \frac{PqM + (IA + iSDL) + SN}{86.4 + 86.4}
\]

Where:
- \(Q(d)\) = Peak domestic wastewater flow (including extraneous flow) in l/sec.
- \(P\) = Design population, in thousands
- \(q\) = Average daily per capita domestic flow in l/cap•d. (exclusive of extraneous flows)
- \(M\) = Peaking factor (as derived from Harman Formula or Babbit Formula)

<table>
<thead>
<tr>
<th>Harman Formula</th>
<th>Babbit Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M = 1 + \frac{14}{4 + P^{0.5}})</td>
<td>(M = \frac{5}{P^{0.2}})</td>
</tr>
</tbody>
</table>

Determined from flow studies for similar developments in the same municipality. The minimum permissible peaking factor shall be 2.0.

- \(I\) = Unit of peak extraneous flow, in l/sec per hectare.
- \(A\) = Tributary area in gross hectares.
- \(i\) = Unit of peak extraneous flow, in m³/cm of pipe diameter/km length of pipe/day.
- \(D\) = Diameter of pipe in cm.
- \(L\) = Length of pipe in km.
- \(S\) = Unit of manhole inflow allowance for each manhole in sag location, in l/sec.
- \(N\) = Number of manholes in sag locations.
3.3.4 Commercial and Institutional Sewage Flows

3.3.4.1 Flow Variation
The wastewater flow from commercial and institutional establishments vary greatly with the type of facilities in the development, the population using the facilities, the presence of water metering, the extent of extraneous flows entering the sewers, etc.

3.3.4.2 Flow Equivalent
In general, the method of estimating wastewater flows for large commercial areas is to estimate a population equivalent for the area covered by the development and then calculate the wastewater flows on the same basis in the previous section. A population equivalent of 85 persons per hectare is often used. It is also necessary to calculate an appropriate peaking factor and select a representative unit of peak extraneous flow.

3.3.4.3 Individual Flow Rate
For individual commercial and institutional users, the wastewater flow rates in Table 3.1 are commonly used for design.

Table 3.1 Wastewater Flows (Average Daily)

<table>
<thead>
<tr>
<th>Type of Establishment</th>
<th>(L/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residence</td>
<td></td>
</tr>
<tr>
<td>Private Dwelling</td>
<td>340 per person</td>
</tr>
<tr>
<td>Apartment Building</td>
<td>340 per person</td>
</tr>
<tr>
<td>Transient Dwelling</td>
<td></td>
</tr>
<tr>
<td>units</td>
<td></td>
</tr>
<tr>
<td>Hotels</td>
<td>340 per bedroom</td>
</tr>
<tr>
<td>Lodging Houses and</td>
<td>270 per bedroom</td>
</tr>
<tr>
<td>Tourists homes</td>
<td>300 per bedroom</td>
</tr>
<tr>
<td>Motels and Tourist</td>
<td></td>
</tr>
<tr>
<td>Cabins</td>
<td></td>
</tr>
<tr>
<td>(does not include</td>
<td></td>
</tr>
<tr>
<td>process water or</td>
<td></td>
</tr>
<tr>
<td>cafeteria)</td>
<td></td>
</tr>
<tr>
<td>(with showers)</td>
<td></td>
</tr>
<tr>
<td>Industrial and</td>
<td></td>
</tr>
<tr>
<td>Commercial Buildings</td>
<td></td>
</tr>
<tr>
<td>(with showers)</td>
<td></td>
</tr>
<tr>
<td>Camps</td>
<td></td>
</tr>
<tr>
<td>Campsite</td>
<td>500 per campsite</td>
</tr>
<tr>
<td>Trailer Camp (Private</td>
<td>340 per person</td>
</tr>
<tr>
<td>Bath)</td>
<td>230 per person</td>
</tr>
<tr>
<td>Trailer Camp (Central</td>
<td>300 per person</td>
</tr>
<tr>
<td>Bath, etc)</td>
<td>340 per person</td>
</tr>
<tr>
<td>Trailer Camp (Central</td>
<td>230 per person</td>
</tr>
<tr>
<td>Bath, Laundry)</td>
<td>225 per person</td>
</tr>
<tr>
<td>Luxury Camps (Private</td>
<td>70 per person</td>
</tr>
<tr>
<td>Bath)</td>
<td></td>
</tr>
<tr>
<td>Children’s Camps (</td>
<td></td>
</tr>
<tr>
<td>Central Bath, etc)</td>
<td></td>
</tr>
<tr>
<td>Labour Camps</td>
<td></td>
</tr>
<tr>
<td>Day Camps - No meals</td>
<td></td>
</tr>
<tr>
<td>Restaurants</td>
<td></td>
</tr>
<tr>
<td>(including washrooms)</td>
<td></td>
</tr>
<tr>
<td>Average Type(2 x</td>
<td>225 per seat +</td>
</tr>
<tr>
<td>Fire Commissioners</td>
<td>100 per employee</td>
</tr>
<tr>
<td>capacity)</td>
<td></td>
</tr>
<tr>
<td>Bar/Cocktail Lounge</td>
<td>25 per patron</td>
</tr>
<tr>
<td>(2 x Fire Commissioners</td>
<td></td>
</tr>
<tr>
<td>capacity)</td>
<td></td>
</tr>
<tr>
<td>Short order or</td>
<td>225 per seat</td>
</tr>
<tr>
<td>Drive-In Service</td>
<td>160 per seat</td>
</tr>
<tr>
<td>24 hour</td>
<td></td>
</tr>
<tr>
<td>Non 24 hour</td>
<td></td>
</tr>
<tr>
<td>Clubhouses</td>
<td></td>
</tr>
<tr>
<td>Residential Type</td>
<td>340 per person</td>
</tr>
<tr>
<td>Non-Residential Type</td>
<td>160 per person</td>
</tr>
<tr>
<td>(Serving Meals)</td>
<td>40 per member</td>
</tr>
<tr>
<td>Golf Club</td>
<td>115 Seat</td>
</tr>
<tr>
<td>Golf Club (with bar</td>
<td>950 per bed</td>
</tr>
<tr>
<td>and restaurant add)</td>
<td></td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
</tr>
<tr>
<td>Hospitals</td>
<td></td>
</tr>
</tbody>
</table>
Other Institutions

<table>
<thead>
<tr>
<th>Schools</th>
<th>Basic</th>
<th>450 per resident</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With cafeteria</td>
<td>50 per person</td>
</tr>
<tr>
<td></td>
<td>With Cafeteria and Showers</td>
<td>70 per person</td>
</tr>
<tr>
<td></td>
<td>With Cafeteria, Showers and Laboratories</td>
<td>90 per person</td>
</tr>
<tr>
<td></td>
<td>Boarding</td>
<td>115 per person</td>
</tr>
<tr>
<td></td>
<td></td>
<td>340 per person</td>
</tr>
<tr>
<td>Theatres</td>
<td>Theatre (Indoor)</td>
<td>25 per seat</td>
</tr>
<tr>
<td></td>
<td>Theatre (Drive-In With Food Stand)</td>
<td>25 per car</td>
</tr>
<tr>
<td>Automobile Service Stations</td>
<td>No Car Washing</td>
<td>20 per car served</td>
</tr>
<tr>
<td></td>
<td>Car Washing</td>
<td>340 per car washed</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>Stores, Shopping Centres & Office Buildings</td>
<td>6 per m²</td>
</tr>
<tr>
<td></td>
<td>Factories (8-hour shift)</td>
<td>115 per person</td>
</tr>
<tr>
<td></td>
<td>Self-service Laundries</td>
<td>1800 per machine</td>
</tr>
<tr>
<td></td>
<td>Bowling Alleys</td>
<td>900 per alley</td>
</tr>
<tr>
<td></td>
<td>Swimming Pools and Beaches</td>
<td>70 per person</td>
</tr>
<tr>
<td></td>
<td>Picnic Parks (With Flush Toilets)</td>
<td>50 per person</td>
</tr>
<tr>
<td></td>
<td>Fairgrounds (based upon average attendance)</td>
<td>25 per person</td>
</tr>
<tr>
<td></td>
<td>Assembly Halls</td>
<td>35 per seat</td>
</tr>
<tr>
<td></td>
<td>Airports (Based on passenger use)</td>
<td>15 per passenger</td>
</tr>
<tr>
<td></td>
<td>Churches</td>
<td>25 per seat</td>
</tr>
<tr>
<td></td>
<td>with Kitchen</td>
<td>35 per seat</td>
</tr>
<tr>
<td></td>
<td>Beauty Parlours</td>
<td>200 per seat</td>
</tr>
<tr>
<td></td>
<td>Barber Shops</td>
<td>75 per seat</td>
</tr>
<tr>
<td></td>
<td>Hockey Rinks</td>
<td>15 per seat</td>
</tr>
<tr>
<td></td>
<td>Day Care Centre</td>
<td>115 per child</td>
</tr>
<tr>
<td></td>
<td>Liquor Licence Establishments</td>
<td>115 per seat</td>
</tr>
<tr>
<td></td>
<td>Mobile Home Parks</td>
<td>1350 per space</td>
</tr>
<tr>
<td></td>
<td>Nursing and Rest Homes</td>
<td>450 per resident</td>
</tr>
<tr>
<td></td>
<td>Senior Citizen Home</td>
<td>600 per apartment</td>
</tr>
<tr>
<td></td>
<td>Recreational Vehicle Park</td>
<td>180 per space</td>
</tr>
</tbody>
</table>

3.3.4.4 Peak Factor

When using the above unit demands, maximum day and peak rate factors must be developed. For establishments in operation for only a portion of the day, such as schools, shopping plazas, etc., the water usage should also be factored accordingly. For instance, with schools operating for 8 hours per day, the water usage rate will be at an average rate of say 70 l/student-day x 24/8 or 210 l/student day over the 8-hour period of operation. The water usage will drop to residual usage rates during the remainder of the day. Schools generally do not exhibit large maximum day to average day ratios and a factor 1.5 will generally cover this variation. For estimation of peak demand rates, an assessment of the water using fixtures is generally necessary and a fixture-unit approach is often used.

The peak water usage rates in campgrounds will vary with the type of facilities provided (showers, flush toilets, clothes washers, etc.) and the ratio of these facilities to the number of campsites. A peak rate factor of 4 will generally be adequate, however, and this factor should be applied to the average expected water usage at full occupancy of the campsite.
3.3.5 Industrial Wastewater Flows

3.3.5.1 Flow Variation
Peak wastewater flow rates from industrial areas vary greatly depending on such factors as the extent of the area, the types of industries present, the provision of in-plant treatment or regulation of flows, and the presence of cooling waters in the sanitary sewer system.

3.3.5.2 Flow Rate
The calculation of design sewer flow rates for industrial areas is difficult. Careful control over the type of industry permitted in new areas is perhaps the most acceptable way to approach the problem. In this way, a reasonable allowance can be made for peak industrial wastewater flow for an area and then the industries permitted to locate in the area can be carefully monitored to ensure that all the overall allowances are not exceeded. Industries with the potential to discharge wastewater at higher than the accepted rate could either be barred from the area, or be required to provide flow equalization and/or off-peak discharge facilities, or be restricted by a sewer-use by-law.

3.3.5.3 Flow Allowances
Some typical wastewater flow allowances for industrial areas are 35 m3/hectare-day for light industry and 55 m3/hectare-day for heavy industry.

3.3.6 Combined Sewer Interceptors
In addition to the above requirements, interceptors for combined sewers shall have capacity to receive sufficient quantity of combined wastewater for transport to treatment works to insure attainment of the appropriate provincial and federal water quality standards.

3.3.6.1 Combined Sewer Overflows
Combined sewer systems (CSSs) are wastewater collection systems that transport both sanitary wastewater and stormwater in a single pipe to a treatment facility. During periods of heavy rainfall or wet weather, the capacity of the CSS and/or treatment facility may be exceeded resulting in direct discharges of untreated wastewater to receiving environments. These overflows are referred to as combined sewer overflows (CSOs). Requirements for CSO treatment shall be as specified by the regulatory agency having jurisdiction.

The design requirements for sanitary sewers outlined in this manual specify that all new sewer systems be designed as separate sewers. There will, however, still remain many existing combined sewer systems. This will result in the continued existence of CSOs. Overflows from intercepting sewers fall under the national wastewater standards provided in the Wastewater Systems Effluent Regulations (WSER) under the Fisheries Act. Under WSER, the discharge of sanitary and/or combined sanitary and storm water is considered a deleterious substance. As such, overflows due to development are not permitted to increase in frequency, volume or duration unless this occurs as part of an approved long-term management plan. Otherwise provision shall be made for treating the overflow.

Reducing the frequency, volume, and duration of CSOs is necessary to facilitate new development. By offsetting the added development flows by removing an equivalent amount of storm water impacts in the sanitary and/or combined sewers, the requirements of WSER can be met. To achieve this, control measures downstream of the excess capacity typically are used. These include the following:

- Collection system inspection and removal of obstructions
- Tide and control gate maintenance, repair, and replacement
- Regular installation and adjustment
- Reduction/retardation of inflows and infiltration
• Upgrade and adjustment of pumps
• Raising existing weirs and installation of new weirs
• System of real-time monitoring/network

Figure 3.1 classifies some of the various types of regulating structures for outlet control.

Figure 3.1 Various Types of Outflow Control Devices

3.3.6.1.1 CSO Control Methods
Source Controls (Best Management Practices)
• Porous pavements
• Flow detention
• Rooftop storage
• Area drain and roof leader disconnection
• Utilization of pervious areas for recharge
• Snow removal and de-icing control
• Commercial/Industrial runoff control
• Sewer line flushing
• Catch basin cleaning
• Identifying and/or eliminating sewer system cross connections

Collection System Controls
• Existing system management and in-system modifications
• Complete or partial sewer separation
• Infiltration/inflow control
• Polymer injection
• Regulating devices and backwater gates
• Remote monitoring and real-time control
• Flow diversion

Storage
• In-system storage
 - Inflatable dams
 - Manual and automatic valves and gates
• Surface storage
• Off-line storage
 - Storage tanks
 - Lagoons
 - Deep tunnels
 - Abandoned pipelines
 - In-receiving water flow balance method
 - Street storage

Physical Treatment
• Sedimentation
• Dissolved air flotation
• Screens
 - Bar screens and coarse screens
 - Fine screens and micro-strainers
• Filtration
• Flow concentrators

Biological Treatment
• Activated sludge
• Trickling filtration
• Rotating biological contactors
• Treatment lagoons
 - Oxidation ponds
 - Aerated lagoons
 - Facultative lagoons
• Land treatment

Physical-Chemical Treatment
• Chemical clarification
• Filtration
• Carbon absorption
• High gradient magnetic separation

Chemical Treatment (disinfection)
• Chemical
• Radiation

3.3.6.1.2 Treatment for Combined Sewer Overflows
Treatment methods for CSOs can be classified as physical, biological, physical-chemical and chemical.

Physical
Physical treatments alternatives include sedimentation, dissolved air floatation, screening and filtration. Physical treatment operations are usually flexible enough to be readily automated and can operate over a wide range of flows. Also, they can stand idle for long period of times without affecting treatment efficiencies.

Solids separation devices such as swirl concentrators and vortex separators have been used in Europe and, to a lesser extent, in the North America. These devices are small, compact solid separation units with no moving parts. Operation of vortex separators is based on the movement of particles within the unit. Water velocity moves the particles in a swirling action around the separator, additional flow currents move the particles down, and a sweeping action moves heavier particles across the sloping floor toward the central drain. During wet weather, the outflow from the unit is throttled, causing the unit to fill and to self-induce a swirling vortex-like flow regime. In the device secondary flow currents rapidly separate settleable grit and floatation matter. Concentrated foul matter is intercepted for treatment, while the cleaner, treated flow discharge to receiving waters. The device is intended to operate under extremely high flow regimes.

A device more recently developed and termed the continuous deflection separator (CDS) differs from the more traditional vortex separator in that it utilizes a filtration mechanism for solids separation and does not reply on secondary flow currents induced by the vortex action.

Biological and Physical-Chemical Treatment
The use of biological and physical-chemical treatment processes for the treatment of combined wastewater has some serious limitations:
• The biomass used to assimilate the nutrients in the combined wastewater must be kept alive during dry weather, which can be difficult except at an existing treatment plant.
• Biological processes are subject to upset when subjected to erratic loading conditions.
• The land requirements for this type of plant can be excessive in an urban area.
• Operation and maintenance can be costly, and facilities require highly skilled operators.

It is feasible and frequent in practice, however, to treat a portion of the wet-weather flow at the treatment plant. In some treatment facilities the wet-weather flow receives full secondary treatment, whereas in others the flow is split, with some receiving primary treatment and disinfection only and the remainder receiving full secondary treatment.
Chemical Treatment (Disinfection)
Refer to Chapter 9 for disinfection requirements.

3.4 Details of Design and Construction

3.4.1 Sewer Capacity
Sewers shall be designed to provide capacity for the peak anticipated wastewater flow and maximum I/I allowance without surcharge when flowing full.

3.4.2 Pressure Pipes
Sanitary sewers may be designed as pressure pipes provided that the hydraulic gradient for maximum flow is below basement elevations.

3.4.3 Minimum Pipe Size
Public sewers shall not be less than 200 mm in diameter, however, under limited circumstances, such as effluent from Septic Tank Effluent Pump Systems (STEP) and Septic Tank Effluent Gravity Systems (STEG), sewers of not less than 100 mm diameter may be allowed if the owner can demonstrate that the proposed sewer size is adequate and will not be detrimental to the operation and maintenance of the sewer system.

The hydraulic capacity of a gravity sewer should be based on consideration of factors such as projected in-service roughness coefficient, projected future connections during design life, slope, pipe material and actual in-service flows and projected flows. In general, sewers larger than the minimum size required shall be chosen so that the minimum velocity at the average flow is not less than 0.6 m/s for self-cleansing purposes, and the maximum velocity at the peak design flow is not greater than 3.0 m/s to minimize turbulence and erosion. Under exceptional circumstances, where velocities greater than 3.0 m/s are attained, provision shall be made to protect against displacement by erosion and impact.

3.4.4 Depth
In general, sewers shall be deep enough to prevent freezing and to receive wastewater from most basements. Where possible, the peak hydraulic gradeline of the sewer shall be 300mm below the underside of footings.

3.4.5 Slope
Sewers shall be laid with a uniform slope between manholes with the exception of alternate wastewater collection systems.

3.4.5.1 Minimum Slopes
All sewers shall normally be designed and constructed to give mean velocities, when flowing full, of not less than 0.6 metres per second or greater than 4.5 metres per second based on Kutter's or Manning's formula using "n" value of 0.013. Use of other practical "n" values may be permitted by the regulator if deemed justifiable. Velocities above 4.5 m/s may be permitted with high velocity protection. The minimum slopes which will provide a velocity of 0.6 m/s when sewers are flowing full are provided in Table 3.2.
Table 3.2 Minimum Slopes for Full-Pipe Velocity of 0.6M/S

<table>
<thead>
<tr>
<th>Sewer Size</th>
<th>Minimum Slope in Metres per 100 Metres</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 mm</td>
<td>0.40</td>
</tr>
<tr>
<td>250 mm</td>
<td>0.28</td>
</tr>
<tr>
<td>300 mm</td>
<td>0.22</td>
</tr>
<tr>
<td>350 mm</td>
<td>0.17</td>
</tr>
<tr>
<td>375 mm</td>
<td>0.15</td>
</tr>
<tr>
<td>400 mm</td>
<td>0.14</td>
</tr>
<tr>
<td>450 mm</td>
<td>0.12</td>
</tr>
<tr>
<td>525 mm</td>
<td>0.10</td>
</tr>
<tr>
<td>600 mm</td>
<td>0.08</td>
</tr>
<tr>
<td>675 mm</td>
<td>0.067</td>
</tr>
<tr>
<td>750 mm</td>
<td>0.058</td>
</tr>
<tr>
<td>900 mm</td>
<td>0.046</td>
</tr>
</tbody>
</table>

If possible a minimum slope of 0.5% (0.5m/100m) should be utilized.

3.4.5.2 Increased Slopes
To achieve 0.6 m/s flow velocities in sewers which will flow less than 1/3 full, steeper slopes than given above must be used where conditions permit. For instance, the minimum slopes mentioned above would have to be doubled when depth of flow is only 1/5 full and quadrupled when depth of flow is only 1/10 full to achieve 0.6 m/s flow velocity.

3.4.5.3 Reduced Slopes
Under special conditions, if full and justifiable reasons are given, slopes slightly less than those required for the 0.6 metre per second velocity when flowing full may be permitted. Such decreased slopes will only be considered where the depth of flow will be 0.3 of the diameter or greater for design average flow. Whenever such decreased slopes are selected, the design engineer must furnish with his report his computations of the anticipated flow velocities of average and daily or weekly peak flow rates. The pipe diameter and slopes shall be selected to obtain the greatest practical velocities to minimize settling problems. The operating authority of the sewer system will give written assurance to the appropriate reviewing agency that any additional sewer maintenance required by reduced slopes will be provided.

3.4.5.4 High Velocity Protection
Where velocities greater than 4.5 metres per second are unavoidable, special provisions shall be made to protect against displacement by erosion and shock.

3.4.5.5 Steep Slope Protection
Sewers on 20 percent slopes or greater shall be anchored securely with concrete anchors or equal, spaced as follows:
- Not over 11 metres centre to centre on grades 20 percent and up to 35 percent.
- Not over 7.3 metres centre to centre on grades 35 percent and up to 50 percent.
- Not over 5 metres centre to centre on grades 50 percent and over.

3.4.6 Alignment
Sewers 600 mm or less in diameter shall be laid with a straight alignment between manholes.
3.4.7 Curvilinear Sewers

Curvilinear sewers may be considered for pipe sizes in excess of 600 mm with the following restrictions applicable:

- The sewer shall be laid as a simple curve of a radius equal to or greater than 60 m.
- Manholes shall be located at the ends of the curve and at intervals not greater than 90 m along the curve.
- The curve shall run parallel to the curb or street centreline.
- The minimum grade on curved sewers shall be fifty percent greater than the minimum grade required for straight runs of sewers. This requirement will be waived if the designer submits calculations to demonstrate that increased slope is not required to achieve self-cleansing velocity.
- Length of pipe shall be such that deflections at each joint shall be less than the allowable maximum recommended by the manufacturer.
- In general, curved sewers should be used only where savings in costs or the difficulty of avoiding other utilities necessitates their use.

3.4.8 Changes in Pipe Size

When a sewer joins a larger one at a manhole, the invert of the larger sewer should be lowered sufficiently to maintain the same energy gradient. An approximate method of securing these results is to place the 0.8 depth point of both sewers at the same elevations. Changes in size of sewers less than or equal to 600 mm shall be at manholes only.

3.4.9 Allowance for Hydraulic Losses at Sewer Manholes

Differences in elevation across manholes should be provided to account for hydraulic losses. The elevation drop may be calculated using the head loss formula:

Head loss Across Manholes:

\[H = k \left(\frac{V_2^2 - V_1^2}{2g} \right) \]

where:

- \(H \) = Head loss m
- \(k \) = Coefficient Dimensionless
- \(V_1 \) = Entrance velocity m/s
- \(V_2 \) = Exit velocity m/s
- \(g \) = Acceleration due to gravity m/s²

Where sewer velocities are less than 2.5 m/s and the velocity change across the manhole is less than 0.6 m/s the invert drop may be determined using Table 3.3.
Table 3.3 Recommended Invert Drop

<table>
<thead>
<tr>
<th>Invert Drop</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A Straight Run</td>
<td>15 mm</td>
</tr>
<tr>
<td>B 45 Degree Turn</td>
<td>30 mm</td>
</tr>
<tr>
<td>C 90 Degree Turn</td>
<td>60 mm</td>
</tr>
</tbody>
</table>

3.4.10 Sewer Services

Sewer services shall be consistent with municipal or provincial requirements. It is required that unless Tees or "Wyes" have been installed, that saddles be used in connecting the service to the sewer. Generally, these are placed at an angle of 45 degrees above horizontal. Connections shall be made by authorized personnel only.

3.4.11 Sulphide Generation

Where sulphide generation in the wastewater collection system is a possibility, the problem shall be minimized by designing sewers to maintain flows at a minimum cleansing velocity of 1.0 m/s.

3.4.12 Materials

Any generally accepted material for sewers will be given consideration, but the material selected should be adaptable to local conditions, such as character of industrial wastes, possibility of septicity, soil characteristics, exceptionally heavy external loading, abrasion and similar problems.

All sewers shall be designed to prevent damage from super-imposed loads. Proper allowance for loads on the sewer shall be made because of the width and depth of trench. When standard strength sewer pipe is not sufficient, the additional strength needed may be obtained by using extra strength pipe or by special construction.

3.4.13 Metering and Sampling

Where no other flow or sampling measuring devices are provided, one manhole on the outfall line shall be constructed with a suitable removable weir for flow measurements and sampling. Easy access for flow measurement and sampling shall be provided. Similar manholes should be constructed on sewer lines from industries to facilitate checking the volume and composition of the waste.

3.5 Installation

Does this belong in a Design Guideline?

3.5.1 Standards

Installation specifications shall contain appropriate requirements based on the criteria, standards and requirements established by industry in its technical publications. Requirements shall be set further in the specifications for the pipe and methods of bedding and backfilling thereof so as not to damage the pipe or its joints, impede cleaning operations and future tapping, nor create excessive side fill pressures or ovalation of the pipe, nor seriously impair flow capacity.

3.5.1.1 Trenching

- The width of the trench shall be ample to allow the pipe to be laid and jointed properly and to allow the backfill to be placed and compacted as needed. The trench sides shall be kept as nearly vertical as possible. When wider trenches are dug, appropriate bedding class and pipe strength shall be used.
- Ledge rock, boulders and large stones shall be removed to provide a minimum clearance of 150 mm below and on each side of all pipe(s).
3.5.1.2 Foundation
The foundation provides the base for the sewer pipe soil system. The project engineer should be concerned primarily with the presence of unsuitable soils, such as peat or other highly organic or compressible soils, and with maintaining a stable trench bottom.

3.5.1.3 Bedding
The sewer pipe should be bedded on carefully compacted granular material. The bedding material shall have a minimum thickness of 150 mm and cover the full width of the trench.

In general, a well-graded crushed stone is a more suitable material for sewer pipe bedding than a uniformly graded pea gravel. For small sewer pipes, the maximum size should be limited to about 10% of the pipe diameter. Crushed stone or gravel meeting the requirement of ASTM Designation C33, Gradation 67 (19-9.8 mm) will provide the most satisfactory sewer pipe bedding, however, the recommendation of the manufacturer should also be taken into consideration when specifying a particular bedding material. Material removed from the trench shall not be used as bedding material.

3.5.1.4 Haunching
The material placed at the sides of a pipe from the bedding up to the spring line is the haunching.

Material used for sewer pipe haunching should be shovel sliced or otherwise placed to provide uniform support for the pipe barrel and to fill completely all voids under the pipe. Haunching material is to be compacted manually. The material used may be similar to the material used for bedding. Material removed from the trench shall not be used as haunching material.

3.5.1.5 Initial Backfill
Initial backfill is the material which covers the sewer pipe and extends from the haunching to a minimum of 300 mm above the top of the pipe. Its function is to anchor the sewer pipe, protect the pipe from damage by subsequent backfill and insure the uniform distribution of load over the top of the pipe. It should be placed in layers. The material used for initial backfill may be similar to the material used for bedding and haunching; however, it shall be of a material which will develop a uniform and relatively high density with little compactive effort. Material removed from the trench shall not be used as initial backfill.

3.5.1.6 Final Backfill
Final backfill is the material which extends from the top of the initial backfill to the top of the trench. It should be placed in 300 mm layers.

The material consists of the excavated material containing no organic matter or rocks having any dimension greater than 200 mm. In most cases, final backfill does not affect the pipe design. Compaction of the final backfill is usually controlled by the location as follows: traffic areas; 95% of modified Proctor density required; general urban areas; 90% of modified Proctor density may be adequate; undeveloped areas; 85% of modified Proctor density may be required. Trench backfilling should be done in such a way as to prevent dropping of material directly on the top of pipe through any great vertical distance.

3.5.1.7 Borrow Materials
Because the material removed from the trench is not to be used as part of the bedding, haunching, nor initial backfill, material must be imported from another source. Borrow material must meet the specifications for final backfill.
Either cohesive or non-cohesive material may be used; however, the project engineer should assess the possible change in groundwater movement if cohesive material is used in rock or if non-cohesive material is used in impermeable soil.

3.5.1.8 Deflection test
- Deflection test shall be performed on all flexible pipe. The test shall be conducted after the final backfill has been in place at least 30 days to permit stabilization of the soil-pipe system.
- No pipe shall exceed a deflection of 5 percent. If deflection exceeds 5 percent, replacement or correction shall be accomplished in accordance with requirements in the approved specifications.
- The rigid ball, mandrel or an approved electronic device used for the deflection test shall have a diameter not less than 95% of the base inside diameter or average inside diameter of the pipe depending on which is specified in the ASTM Specification, including the appendix, to which the pipe in manufactured. The test shall be performed without mechanical pulling devices.

3.5.2 Joints
The installation of joints and the materials used shall be included in the specifications. Sewer joints shall be designed to minimize infiltration and to prevent the entrance of roots throughout the life of the system.

3.6 Sewer Rehabilitation Methods

3.6.1 Sewer Replacement
Sewer replacement is the most expensive method of sewer rehabilitation. In cases where there is evidence of structural damage or where differential settlement has altered the sewer grade, sewer replacement may be the only reasonable approach.

3.6.2 Sewer Relining
Sewer relining involves inserting a layer of piping material with a smaller diameter inside an existing pipe.

3.6.3 Lining and Slip Lining
Lining materials can range from cement applied directly to the inside of the existing pipe to modern plastics. Continuous plastic linings can reduce infiltration completely, though the net I/I control effectiveness of slip lining is a function of the integrity of sealing the annular space between the outside of the liner and the inside of the original pipe. Continuous grouting of the annular space will produce a more reliable seal than just packing the annular space at manhole pipe protrusions. The long-term integrity of high-density polyethylene has been shown; however, long-term net effectiveness will be more a function of the life of the annular space sealant.

Piping materials that are inserted but use the methods of joining pipe sections have a greater chance of leakage but still can be highly resistant to infiltration with effective annular space sealing and jointing technique. Where existing lateral to main line connections are sound, hook up of laterals is limited to cutting out the part of the lining covering the lateral and sealing the annular space. The integrity of this sealing step is a major factor in the overall infiltration reduction effectiveness. If the existing lateral to main line connection is not sound, a new lateral connection directly to the liner by a pipe saddle arrangement can achieve the best results. Typically, this will require external exposure of the lateral, requiring extreme care in the backfilling operation. Lining and sealing the annular space and careful lateral reconnections can be as effective in controlling I/I as replacement methods.
3.6.4 Inversion Lining

Because it has close contact with the inside of the original pipe, inversion lining eliminates annular space leakage. If the part of the lining that covers the laterals is cut out properly, leakage around the laterals can be reduced to a low value. Lack of care in this step can result in poor infiltration control. Inversion lining can be effective in controlling I/I as a replacement method and does not require excavation to reconnect laterals if the existing lateral to main line hookup is in sound condition.

Inversion lining can be used for lining manholes and should exhibit the same high degree of infiltration reduction shown in sewer pipes. Openings to the sewers entering a manhole should be made carefully, as leakage could significantly reduce the overall effect of lining.

3.6.5 Sewer Sealing

Chemical grout sealers for internal grouting of small to medium sewers are widely accepted in the sewer maintenance industry, with even relatively small utilities owning their own grout packers and sealing equipment. The effectiveness of chemical grouting to seal a leaking joint is a function of the condition and structural stability of the pipe, the surrounding backfill material, and the quality of workmanship. Chemical grouting using conventional packing equipment is most effective where the failed element is the joint, not the pipe material.

Where grout is correctly applied, it is effective in preventing infiltration for a joint, however, the high degree of effectiveness only applies to the sealed joint, not necessarily to the section of pipe.

Leakage from service laterals, joints close to service laterals, adjacent pipe sections, and defects not correctable by the sealing procedure can render infiltration removal less effective.

3.6.6 Service Lateral Rehabilitation

Service laterals can constitute a serious source of both infiltration and inflow. They can contribute up to 75% or more of peak infiltration flows. The rehabilitation methods applied to the main sewer line, including slip lining, inversion lining, and grouting have been adapted for rehabilitating service laterals in addition to excavation and replacement.

In addition to I/I from the laterals, infiltration frequently results from leaky connection of the lateral to the main sewer and leakage at main sewer joints close to the lateral; effective I/I control requires testing and repairing these sources of infiltration.

3.7 Inflow Control

Inflow is controlled by disconnecting the pathway by which storm-generated surface waters enter the sewer. Typical pathways are manhole covers, catch basins, area drains, and roof drain downspouts.

3.7.1 Manholes

Manhole covers containing vent and pick holes can allow significant sources of inflow when they are located in the path of surface runoff. Replacement with a water proof, gasketed cover is estimated to be 90% effective in reducing inflow.

Manholes frequently leak between the frame and corbel, especially if there is heaving of the pavement from freezing. Use of elastomeric sealants poured or towelled on the outside of the manhole or elastic sleeves is estimated to be 90% effective in reducing flow. Application of an adhesive sealant to the interior of the corbel and joint beneath the flange of the manhole frame is estimated to be only 75% effective because water can still enter the space between the frame and corbel, increasing the chance for seal failure from frost action.
3.7.2 Catch Basins
Catch basins and area drains connected to sanitary sewers can contribute large amounts of inflow. Plugging the connection to the sanitary system and reconnection to a storm drain is estimated to be 90% effective in reducing inflow. The effectiveness is estimated to be less than 100% to compensate for migration of some water to other parts of the sanitary sewer system.

3.7.3 Roof Drain
Downspouts or roof drains are frequent sources of inflow. Disconnection of these from sanitary sewer systems and reconnection to a storm sewer is estimated to be 90% effective in reducing inflow, with the remaining 10% finding its way to the sewer system by other routes. Where the disconnected downspout is discharged on the ground surface rather than being connected to a storm sewer, the inflow reduction is likely to be significantly less (possibly zero if service laterals serving the property are in poor condition).

3.7.4 Other
Sump pump and foundation drain connections to sanitary sewers represent other significant sources of inflow. Disconnection of these sources and reconnection to storm sewers results in approximately 75% inflow reduction. Any discharge of these disconnected sources to the ground surface prevents net reduction. To maintain long-term effective control requires an effective enforcement program to preclude reconnection.

3.8 Directional Drilling
This technique is mainly used for the installation of long, vertically curved pipelines, usually under bodies of water such as rivers, estuaries, and canals. Using substantial surface equipment and being capable of drives to more than 1000 m, the technique is best suited to major schemes that need expensive and heavy equipment. Directional drilling can also be used for service connections. In this technique, a small-diameter pilot hole is drilled in a shallow arc. A wash-over pipe slightly larger than the pilot tube follows the drill string, acting both as temporary support and a method of reducing friction on the drill string before enlargement. The completed pilot bore is enlarged using back-reaming techniques until large enough to receive the final pipe, which is normally steel or polyethylene.

3.9 Manholes
3.9.1 Location
Manholes shall be located at all junctions, changes in grade, size or alignment (except with curvilinear sewers) and termination points of sewers.

3.9.2 Spacing
The maximum acceptable spacing for manholes is 120 m for sewers 400 mm in diameter or less. Spacing of up to 150 m may be used for sewers 450 mm to 750 mm in diameter. Spacing of up to 180 m may be considered in cases where cleaning equipment is available and capable of maintaining the collection system. Larger sewers may use greater manhole spacing.

Cleanouts may be used only with the approval of the utility and regulatory agencies and shall not be substituted for manholes nor installed at the end of laterals greater than 45 m in length. Regulatory agencies???

3.9.3 Minimum Diameter
The minimum diameter of a sanitary manhole shall be 1050 mm.
3.9.4 Drop Manholes
A drop pipe should be provided for a sewer entering a manhole at an elevation of 600 mm or more above the manhole invert. Where the difference in elevation between the incoming sewer and the manhole invert is less than 600 mm the invert should be filleted to prevent solids deposition.

Inside drop connections (when necessary), shall be secured to the interior wall of the manhole and provide access for cleaning.

Due to the unequal earth pressures that would result from the backfilling operation in the vicinity of the manhole, the entire outside drop connection shall be encased in low-strength concrete.

3.9.5 Manhole Depth
Precast manholes greater than 9 m deep are to include a ladder assembly fixed to the manhole sections. Or should ladders never be included??? An unsafe ladder on a 9 m deep MH is more dangerous than an unsafe ladder on a short MH.

3.9.6 Pipe Connections
A flexible watertight joint shall be provided on all pipes, within 300 mm of the outside wall of the manhole.

3.9.7 Frost Lugs
Where required, frost lugs shall be provided to hold precast manhole sections together.

3.9.8 Frame and Cover
The manhole frame and cover shall be made of cast iron and designed to meet the following conditions:
- Adequate strength to support superimposed loads;
- Provision of a good fit between cover and frame to eliminate movement in traffic; and
- A reasonably tight closure.

3.9.9 Watertightness
Manholes shall be of the pre-cast or poured-in-place concrete type, or of another type approved by the regulatory agencies. All manhole joints must be watertight and the manhole shall be waterproofed on the exterior, if required.

Watertight manhole covers are to be used wherever the manhole tops may be flooded by street runoff or high-water level. Consideration should be given where manhole structures and covers may be more prone to flooded conditions in the future due to climate change. Locked manhole covers may be desirable in isolated easement locations, or where vandalism may be a problem.

3.9.10 Flow Channel and Benching
The channel should be, as far as possible, a smooth continuation of the pipe. The completed channel should be U-shaped.

3.9.10.1 Small Pipe Channel
For sewer sizes less than 375 mm, the channel height should be at least one half the pipe diameter.
3.9.10.2 Large Pipe Channel
For sewer sizes 375 mm and larger, the channel height should not be less than three-fourths of the pipe diameter.

3.9.10.3 Bench Area
The bench should provide good footing for a workman and a place for tools and equipment.

3.9.10.4 Bench Slope
Benching should be at a slope of at least 1:12 (vertical: horizontal) and not greater than 1:8. Benching should have a wood float finish.

3.9.11 Corrosion Protection
Where corrosion is anticipated because of either sulphate attack or sulphides, consideration shall be given to the provision of corrosion resistant material or effective protective linings.

3.10 Testing and Inspection

3.10.1 General
This section applies to the preparation of technical specifications

Each section of a sanitary sewer shall be tested for exfiltration and/or infiltration. A section is the length of pipe between successive manholes or termination points, including service connections.

Each section of a sewer, and its related appurtenances, shall be flushed prior to testing. The method of testing shall be as described in the construction specifications. In the absence of such specifications the following testing method will apply.

3.10.2 Exfiltration Test
Each sewer section shall be filled with water and a nominal head shall remain on the section for twenty-four hours immediately prior to testing.

Water shall be added to the section to establish a test head of 1.0 m over either the crown of the pipe, measured at the highest point of the section, or the level of static groundwater, whichever is greater. This may be increased by the inspector in order to satisfy local conditions.

The test head shall be maintained for one hour. The volume of water required to maintain the head during the test period shall be recorded.

3.10.3 Infiltration Test
Infiltration tests shall be conducted in lieu of exfiltration tests where the level of static groundwater is 750 mm or more above the crown of the pipe, measured at the highest point in the section.

A 90-degree V-notch weir shall be placed in the invert of the pipe at the downstream end of the section. The total volume of flow over the weir for one hour shall be measured and recorded.
3.10.4 Allowable Leakage

Allowable leakage shall be determined by the following formula:

\[L = F \times D \times \frac{S}{100} \]

Where:
- \(L \) = Allowable leakage in litres per hour
- \(D \) = Diameter in mm
- \(S \) = Length of section, in metres
- Leakage factor, (litres per hour per mm of diameter per 100 metres of sewer):

Exfiltration Test:
- Porous Pipe: \(F = 0.12 \) litre
- Non-Porous Pipe: \(F = 0.02 \) litre

Infiltration Test:
- Porous Pipe: \(F = 0.10 \) litre
- Non-Porous Pipe: \(F = 0.02 \) litre

3.10.5 Low Pressure Air Testing

Air testing equipment shall be designed to operate above ground. No personnel will be permitted in the trench during testing. Air testing will not be permitted on pipes with diameter greater than 600 mm.

The test section shall be filled with air until a constant pressure of 28 kPa is reached and allowed to stabilize for at least five minutes. After the five-minute period, the air supply shall be shut off, and the pressure decreased to 24 kPa. The time required for the pressure to reach 17 kPa shall be measured.

3.10.6 Allowable Time for Air Pressure Decrease

Minimum times allowed for air pressure drop are provided in Table 3.4.

Table 3.4 Minimum Specified Time Required for Air Testing

<table>
<thead>
<tr>
<th>Pipe Dia. (mm)</th>
<th>Min. Time (min: sec)</th>
<th>Length for Min. Time (m)</th>
<th>Time for Longer Length (sec)</th>
<th>Specification Time for Length (L) Shown (min:sec)</th>
</tr>
</thead>
</table>
3.10.7 Sewer Inspection
The specifications shall include a requirement for inspection of manholes and sewers for watertightness, prior to placing into service.

3.10.7.1 Video Inspection
Inspection of 100% of the sewer using the closed circuit television method and recorded on videotape should be specified. This should be conducted within the one-year guarantee period. This inspection should be carried out preferably during the periods of high ground water table in the spring or fall, or at the discretion of the owner.

3.10.7.2 Inspection Record
The complete record of the inspection shall be the property of the owner. The original video and one edited copy of the video of the sections showing defects shall be turned over to the owner.

3.10.7.3 Record Content
The maximum speed of the television camera through the pipe shall be 0.30 metres per second with a 5-second minimum stop at each defective location and a 15-second minimum stop at each lateral showing a flow discharging into the pipe. The video shall display distances at a maximum interval of three metres and a brief description of every defective location and of each service connection.

3.11 Inverted Siphons
Inverted siphons should have not less than two barrels with a minimum pipe size of 150 mm and shall be provided with necessary appurtenances for convenient flushing and maintenance. The manholes shall have adequate clearances for rodding; and in general, sufficient head shall be provided and pipe sizes selected to secure velocities of at least 0.9 m/s for average flows. The inlet and outlet details shall be so arranged that the normal flow is diverted to one barrel and that either barrel may be cut out of service for cleaning. The vertical alignment should permit cleaning and maintenance.

3.12 Protection of Water Supplies
3.12.1 Water-Sewer Cross Connections
There shall be no physical connection between a public or private potable water supply system and a sewer, or appurtenance thereto, which would permit the passage of any wastewater or polluted water into the potable supply. No water pipe shall pass through or come in contact with any part of a sewer manhole, gravity sewer or wastewater forcemain.

3.12.2 Relation to Water Works Structures
While no general statement can be made to cover all conditions, it is generally recognized that sewers shall be kept remote from public water supply wells or other water supply sources and structures.
3.12.3 Relation to Water Mains

3.12.3.1 Horizontal and Vertical Separation
Whenever possible, sewers should be laid at least three metres horizontally, from any existing or proposed water main. Should local conditions prevent a lateral separation of three metres a sewer may be laid closer than three metres to a water main if:

- It is laid in a separate trench, or if;
- It is laid in the same trench, with the water main located at one side with a minimum horizontal separation of 300 mm and on a bench of undisturbed earth, and if;
- In either case the elevation of the top (crown) of the sewer is at least 300 mm below the bottom (invert) of the water main or as required by the Regulatory Agency having jurisdiction.
- Where a water main must be installed paralleling a gravity sewer and at a lower elevation than the gravity sewer, the water main must be installed in a separate trench. The soil between the trenches must be undisturbed.

3.12.3.2 Crossings
Whenever sewers must cross under the water mains, the sewer shall be laid at such an elevation that the top of the sewer is at least 450 mm below the bottom of the water main. When the elevation of the sewer cannot be varied to meet the above requirement, the water main shall be relocated to provide this separation or reconstructed with mechanical - joint pipe for a distance of three metres on each side of the sewer. One full length of water main should be centred over the sewer so that both joints will be as far from the sewer as possible.

3.12.3.3 Special Conditions
When it is impossible to obtain proper horizontal and vertical separation as stipulated above, the sewer shall be designed and constructed equal to water pipe and shall be pressure-tested to assure water-tightness.

3.12.3.4 Warning/Marker and Detection Tape
Warning/marker and detection tape should be installed continuously with a minimum 1.0 m overlap at joints above water, sewer, and forcemains. Warning/marker tape shall be heavy gauge polyethylene, 150 mm wide and indicate the service line below. Detectable tape shall be either fabricated of detectable metallic material for underground installation or corrosion resistant insulated wires embedded in warning/marker tape. Detection tapes are intended for pipe location and must be installed above the pipe at an elevation 300 mm below ground surface and be detectable using conventional pipe location apparatus.

3.13 Sewers in Relation to Watercourses

3.13.1 Location of Sewers in Relation to Watercourses

3.13.1.1 Cover Depth
The top of all sewers entering or crossing watercourses shall be at a sufficient depth below the natural bottom of the stream bed to protect the sewer line. In general, the following cover requirements must be met:

- 0.3 m of cover is required where the sewer is located in rock;
- 0.9 m of cover is required in other material. In major streams, more than 0.9 m of cover may be required.
- In paved stream channels, the top of the sewer line should be placed below the bottom of the channel pavement.

More cover than stated above may be required. Site-specific conditions must be evaluated by the designer to determine necessary design elements. Less cover will be approved only if the proposed sewer crossing will not interfere with the future improvements to the stream channel. Reasons for requesting less cover should be given in the project proposal.
3.13.1.2 Horizontal Location
Sewers located along watercourses shall be located outside of the stream bed and sufficiently remote therefrom to provide for future possible stream widening and to prevent pollution by siltation during construction.

The impacts of climate change should be considered.

3.13.1.3 Structures
The sewer outfalls, headwalls, manholes, gate boxes, or other structures shall be located so they do not interfere with the free discharge of flood flows of the watercourse.

3.13.1.4 Alignment
Sewers crossing watercourses should be designed to cross the watercourse as nearly perpendicular to the stream flow as possible and shall be free from change in grade. Sewer systems shall be designed to minimize the number of stream crossings.

3.13.2 Construction
3.13.2.1 Materials
Sewers entering or crossing watercourses shall be constructed of cast or ductile iron pipe with mechanical joints; otherwise they shall be constructed so they will remain watertight and free from changes in alignment or grade. Material used to backfill the trench shall be stone, coarse aggregate, washed gravel or other materials which will not cause siltation.

3.13.2.2 Siltation and Erosion
Construction methods that will minimize siltation and erosion shall be employed. The design engineer shall include in the project specifications the method(s) to be employed in the construction of sewers in or near watercourses to provide adequate control of siltation and erosion. Specifications shall require that cleanup, grading, seeding and planting or restoration of all work areas shall begin immediately. Exposed areas shall not remain unprotected for more than seven days.

3.14 Aerial Crossings
Support shall be provided for all joints in pipes utilized for aerial crossings. The supports shall be designed to prevent frost heave, overturning and settlement.

Precautions against freezing, such as insulation and increased slopes shall be provided. Expansion jointing shall be provided between above-ground and below-ground sewers.

For aerial watercourse crossings the impact of flood waters debris, and climate change impact shall be considered. The bottom of the pipe shall be placed no lower than the elevation of the one in one-hundred (1:100) year flood, with climate change impacts considered for the peak flood elevation.

3.15 Trenchless Construction
Trenchless technologies offer a wide range of construction techniques, which may be used as an alternative to traditional open-cut methods. Trenchless construction techniques should be considered for watercourse crossings. The feasibility of trenchless construction will be based on site-specific conditions. Watercourse width, streambed profile and subsurface properties, suitable access for equipment, as well as costs and availability of technology will all be factors in deciding if a trenchless construction is viable.
3.16 Alternative Wastewater Collection Systems

Alternative wastewater collection systems are options to be considered for servicing small existing or new rural developments when the estimated costs of a conventional wastewater collection system is considered to be prohibitive. Two options are generally considered:

- Small diameter gravity sewers (SDGS); and
- Small diameter pressure sewers (SDPS).

3.16.1 Small Diameter Gravity Sewers

Small diameter gravity sewers (SDGS) require preliminary treatment through the use septic tanks upstream of each connection. With the solids removed, the collector mains need not be designed to carry solids as conventional sewers must be. Collector mains are smaller in diameter and laid with variable or inflective gradients. Manholes are generally replaced with cleanouts. When used, however, manholes must be designed to prevent inflow/infiltration through waterproofing, sealed lids, etc. The required size and shape of the mains is dictated primarily by hydraulics rather than solids carrying capabilities.

3.16.1.1 House Connections

House connections are made at the inlet to the septic tank. All household wastewaters enter the system at this point.

3.16.1.2 Septic Tanks

Septic tanks are underground, watertight tanks with baffled inlets and outlets. They are designed to remove both floating and settleable solids from the waste stream through quiescent settling over a period of 24 to 48 hours. Ample volume is provided for storage of the solids which must be periodically removed through an access port. Typically, a single-chamber septic tank, vented through the house plumbing stack vent, is used.

3.16.1.3 Service Laterals

Service Laterals connect the septic tank with the collector main. Typically, they are 75-100 mm in diameter, but should be no larger than the collector main to which they are connected. They may include a check valve or other backflow prevention device near the connection to the main.

3.16.1.4 Collector Mains

Collector mains are small diameter plastic pipes with typical minimum diameters of 75 - 100 mm. The mains are trenched into the ground at a depth sufficient to collect the septic tank effluent from most connections by gravity. Unlike conventional gravity sewers, small diameter gravity sewers are not necessarily laid on a uniform gradient with straight alignments between cleanouts or manholes. In places, the mains may be depressed below the hydraulic gradeline. Also, the alignment may be curvilinear between cleanouts to avoid obstacles in the path of sewers.

3.16.1.5 Cleanouts and Vents

Cleanouts and vents provide access to the collector mains for inspection and maintenance. Cleanouts are preferable to manholes because they are less costly and can be more tightly sealed to eliminate most infiltration and grit which commonly enter through manholes. Vents are necessary to maintain free flowing conditions in the mains. Vents in household plumbing are sufficient except where depressed sewer sections exist. In such cases, air release valves or ventilated cleanouts may be necessary at the high points of the main.

Manholes should only be used where cleanouts are not feasible. As discussed above, manholes, when used, must be designed to prevent inflow/infiltration through waterproofing, sealed lids, etc.
3.16.1.6 Lift Stations
Lift stations are necessary where the elevation differences do not permit gravity flow. Either STEP units (see Section 3.16.2) or mainline lift stations may be used. STEP units are small lift stations installed to pump wastewater from one or a small cluster of connections to the collector main, while a mainline lift station is used to service all connections in a larger drainage basin.

3.16.1.7 Design Criteria
Peak flows are based on the following formula:

\[Q = 1.262 + 0.032D \]

Where:

\(Q \) = Flow in l/sec
\(D \) = Number of equivalent dwelling units served

*Above equation for 20 usgpm pump

A determination of peak flows is used for design instead of actual flow data. Each segment of sewer is analyzed by the Hazen-Williams or Manning equation. Roughness coefficients of 130 to 140 for Hazen-Williams and 0.011 for Manning’s are commonly used. No minimum velocity is required. Check valves may be used in flooded or other sections on service laterals where backup from the main is possible.

All components must be corrosion-resistant and all discharges (e.g., to a conventional gravity interception or treatment facility) must be made through drop inlets below the liquid level to minimize odours. The system is ventilated through service-connection house vent stacks. Other atmospheric openings should be directed to sound beds for odour control, unless they are located away from the populace.

Mainline cleanouts are generally spaced at 120 to 300m apart. The septic (interceptor) tank effluent is generally assumed to contain 100 to 150 mg/l BOD5 and 50 to 75 mg/l SS. Treatment is normally achieved by stabilization pond or by subsurface infiltration.

3.16.1.8 Monitoring
Some management schemes involve biannual tank inspection, effluent filter cleaning, and pumping schedule (e.g. 3 to 5 year for residential users and every year for commercial users). Otherwise, no monitoring plan is typically established.

3.16.2 Small Diameter Pressure Sewers (SDPS)
Small diameter pressure sewers are small diameter pipelines, buried just below frost level, which follow the profile of the ground. Main diameters typically range from 50 - 150 mm with service lateral diameters of 25 - 38 mm. Polyvinyl Chloride (PVC) is the most common piping material. Piping should be pressure rated for the anticipated operating conditions.

Each home connected to the pipeline requires either a grinder pump (GP) or a septic tank effluent pump (STEP). The major difference between the two pressure systems is in the on-site equipment and layout, as outlined in the following section. Modification of household pumping is not required for either system. Pressure systems do not have the large excess capacity typical of conventional gravity sewers therefore they must be designed with a balanced approach with consideration of future growth and internal hydraulic performance.
Grinder Pump effluent is generally about twice the strength of the conventional sewer wastewater (e.g. BOD and TSS of 350mg/l). STEP effluent is pre-treated and has a BOD5 of 100 to 150mg/l and SS of 50 to 70 mg/l.

3.16.2.1 Grinder Pump System

A Grinder Pump (GP) pressure sewer has a pump and electrical service at each service connection. The pumps discharge building wastewater into a pressurized pipe system that terminates at a treatment facility or gravity collector. Since the mains are pressurized there is no infiltration into them; however, infiltration and inflow can occur in the house sewers and the pump wells.

The pipe network typically doesn’t have closed loops. The sewer profile and the ground surface profile are often parallel and the horizontal alignment can be curvilinear. Cleanouts are used to provide access for flushing. Automatic air release valves are required at and slightly downstream of summits in the sewer profile. Because of the small diameters and curvilinear horizontal and vertical alignment, excavation depths and volumes are typically smaller than conventional sewers, sometimes requiring only a chain trencher.

Grinder Pump systems can use either centrifugal or positive displacement pumps. The choice is typically up to the design engineer. The positive displacement pumps have a discharge nearly independent of head, which may simplify some design problems however it may cause some additional operational problems.

3.16.2.2 Septic Tank Effluent Pump (STEP) System

A Septic Tank Effluent Pump (STEP) system typically has a septic tank and a pump at each service connection. Electrical service is required at each service connection. The pumps discharge septic tank effluent into a pressurized pipe system that terminates at a treatment facility or a gravity sewer. Since the pipes are pressurized, there will be no inflow into them, but infiltration and inflow into the house sewers and the septic/interceptor tanks should be minimized during construction of onsite facilities. The tanks remove grit, settleable solids and grease. The discharge line from the pump is equipped with at least one check valve and one gate valve. The pipe network can contain closed loops but typically does not. The sewer profile and the ground surface profile are often parallel and the horizontal alignment can be curvilinear. Cleanouts are used to provide access for flushing. Automatic air release valves are required at and slightly downstream of summits in all pressure sewer profiles. Because of the small diameter, curvilinear horizontal and vertical alignments, excavation depths and volumes are typically much smaller for pressure sewers than for conventional sewers, sometimes requiring only a chain trencher for excavation.

3.16.2.3 Design Criteria

When positive displacement Grinder Pump systems are used, the design flow can be obtained by multiplying the pump discharge by the maximum number of pumps expected to be operating simultaneously. The following equation is used for centrifugal pumps:

\[Q = 1.262 + 0.032D \]

Where:

- \(Q \) = Flow in l/sec
- \(D \) = Number of equivalent dwelling units served

*Above equation for 20 usgpm pump

The operation of the system under various assumed conditions should be simulated by a computer as a check on the adequacy of the design. Allowances for infiltration and inflow are not required. No minimum velocity is generally used in design, but Grinder Pump systems must attain 1 – 1.5 m/s at least once per day.
A Hazen-Williams coefficient $C = 130$ to 150 is suggested for hydraulic analysis.

Pressure mains generally use 50mm or large PVC pipe, although 750mm pipe is preferred owing to the availability of standard tapping equipment. Rubber-ring joints are preferred over solvent welding due to the high coefficient of expansion for PVC pipe. High-density polyethylene (HDPE) pipe with fused joints can also be used.

3.16.2.4 Monitoring
Detailed records of daily maintenance and annual summaries should be provided. Also specific records for each unit should be kept with the community plan in order to permit maintenance staff to evaluate potential problems prior to the arrival at the site of the emergency call. On larger flow sources, cycle counters may be useful to track any trends, just as periodic line-pressure checks can alert the O&M staff to impending needs.

3.16.2.5 System Layout
Pressure sewer systems should be designed taking the following into consideration:
- Branched layout rather than looped.
- Maintain cleansing velocities especially when grinder pump type pressure sewers are used.
- Minimize high head pumping and downhill flow conditions.
- Locate on lot facilities close to the home for ease of maintenance.
- Provide for each home to have its own pump chamber.
- Septic tanks are also needed with a STEP system.

Other General Considerations
Following are general considerations when evaluating the small diameter servicing option, some of which have been mentioned in the previous two sections.

3.16.2.5.1 Population Density
When housing is sparse, resulting in long reaches between services, the cost of providing conventional sewers is often prohibitive. Pressure sewers and small diameter gravity sewers are typically less costly on a lineal foot basis, so often prove to be more cost-effective when serving sparse populations.

3.16.2.5.2 Ground Slopes
Where the ground profile over the sewer main slopes continuously downward in the direction of flow, conventional or small diameter gravity sewers are normally preferred. If intermittent rises in the profile occur, conventional sewers may become cost-prohibitively deep. The variable grade gravity sewer variation of small diameter gravity sewers, by use of inflective gradients and in conjunction with septic tank effluent pump (STEP) pressure sewer connections, can be economically applied. Vacuum sewers may be particularly adaptable to this topographic condition, so long as head requirements are within the limits of available vacuum.

In flat terrain conventional sewers become deep due to the continuous downward slope of the main, requiring frequent use of lift stations. Both the deep excavation and the lift stations are expensive. SDGS are buried less deep, owing to the flatter gradients permitted. Pressure sewers are often found to be practical in flat areas, as ground slope is of little concern. In areas where the treatment facility or interceptor sewer are higher than the service population, pressure sewers are generally preferred, but should be evaluated against SDGS systems with lift stations.

3.16.2.5.3 Subsurface Obstacles
Where rock excavation is encountered, the shallow burial depth of alternative sewer mains reduces the amount of rock to be excavated.
Deep excavations required of conventional sewers sometimes encounter groundwater. Depending on severity, dewatering can be expensive and difficult to accomplish.

3.16.3 Detailed Design Guidelines

The above are general design considerations only. For detailed design, refer to:

2. Metcalf & Eddy Wastewater Engineering, Treatment, Disposal and Reuse, Boston, Massachusetts, 1991
Chapter 4 Sewage Pumping Stations

4.1 General

4.1.1 Design Capacity

4.1.1.1 Separate Sewer Systems

4.1.1.2 Combined Sewer Systems

4.1.2 Accessibility

4.1.3 Grit

4.1.4 Sewer Entry

4.1.5 Fencing

4.1.6 Heating

4.1.7 Piping System

4.1.8 Electrical

4.1.9 Lighting

4.1.10 Safety

4.1.11 Construction Materials

4.2 Design

4.2.1 Types of Pumping Systems

4.2.2 Structures

4.2.2.1 Separation

4.2.2.2 Equipment Removal

4.2.2.3 Access

4.2.3 Pumps and Pneumatic Injectors

4.2.3.1 Duplicate Units

4.2.3.2 Pump Protection

4.2.3.3 Pump Openings

4.2.3.4 Priming

4.2.3.5 Electrical Equipment

4.2.3.6 Intake

4.2.3.7 Constant Speed vs. Variable Speed Pump

4.2.3.8 Controls

4.2.3.9 Alternation

4.2.4 Valves

4.2.4.1 Suction Line

4.2.4.2 Discharge Line
4.2.5 Wet Wells ... 82
 4.2.5.1 Divided Wells .. 82
 4.2.5.2 Pump Cycle ... 82
 4.2.5.3 Size .. 82
 4.2.5.4 Floor Slope .. 82
 4.2.5.5 Float Controls ... 82
 4.2.5.6 Pump Start Elevation .. 82
 4.2.5.7 Pump Stop Elevation .. 83
 4.2.5.8 Bottom Elevation .. 83
 4.2.5.9 Air Displacement .. 83
 4.2.5.10 Location of Valves .. 83
4.2.6 Dry Wells .. 83
 4.2.6.1 Dry Well Dewatering .. 83
 4.2.6.2 Maintenance .. 83
4.2.7 Ventilation .. 83
 4.2.7.1 General ... 83
 4.2.7.2 Air Inlets and Outlets .. 83
 4.2.7.3 Electrical Controls ... 83
 4.2.7.4 Fans, Heating, and Dehumidification ... 84
 4.2.7.5 Wet Wells ... 84
 4.2.7.6 Dry Wells .. 84
4.2.8 Flow Measurement .. 84
4.2.9 Water Supply .. 84
4.2.10 Suction Lift Pumps .. 84
 4.2.10.1 General ... 84
 4.2.10.2 Self-Priming Pumps .. 85
 4.2.10.3 Vacuum-Priming Pumps ... 85
4.2.11 Submersible Pump Stations.. 85
 4.2.11.1 General ... 85
 4.2.11.2 Construction ... 85
 4.2.11.3 Pump Removal ... 85
 4.2.11.4 Wet Wells ... 85
 4.2.11.5 Mixing for Wet Wells .. 85
 4.2.11.6 Power Supply .. 85
4.2.11.7 Controls .. 86
4.2.11.8 Power Cables .. 86
4.2.11.9 Valves ... 86
4.2.11.10 Ventilation .. 86
4.2.12 Cathodic Protection .. 86
4.2.13 Alarm Systems .. 86

4.3 Emergency Operation.. 86

4.3.1 Overflow Prevention Methods ... 87
4.3.2 Overflow ... 87
4.3.3 Equipment Requirements .. 87
 4.3.3.1 Engine Protection ... 87
 4.3.3.2 Size .. 87
 4.3.3.3 Fuel Type .. 87
 4.3.3.4 Engine Ventilation .. 87
 4.3.3.5 Routine Start-up ... 87
 4.3.3.6 Protection of Equipment .. 87

4.3.4 Engine-Driven Pumping Equipment ... 87
 4.3.4.1 Pumping Capacity ... 88
 4.3.4.2 Operation ... 88
 4.3.4.3 Portable Pumping Equipment .. 88

4.3.5 Engine-Driven Generating Equipment ... 88
 4.3.5.1 Generating Capacity ... 88
 4.3.5.2 Operation ... 88
 4.3.5.3 Portable Generating Equipment .. 88

4.4 Instructions and Equipment .. 89

4.5 Force Mains ... 89
 4.5.1 Velocity ... 89
 4.5.2 Air Relief Valve and Blowoff .. 89
 4.5.3 Termination .. 89
 4.5.4 Design Pressure .. 89
 4.5.5 Size .. 89
 4.5.6 Slope and Depth .. 89
 4.5.7 Special Construction ... 89
 4.5.8 Design Friction Losses .. 89
4.5.9 Separation from Water Mains

4.5.10 Identification

4.6 Testing

4.6.1 General

4.6.2 Leakage Test

4.6.3 Allowable Leakage
Chapter 4 Sewage Pumping Stations

CSA W204:19 Flood resilient design of new residential communities (Jan 2020) should be referenced when designing sewage pumping stations.

4.1 General

Sewage pumping station structures and electrical and mechanical equipment shall be protected from physical damage from the one hundred (100) year flood and impacts of climate change.

The pumping station should be located in an area where it will remain fully operational and fully accessible during flooding events, through the provision of back-up generators or alternative power supply.

The pumping station should be elevated to a minimum one metre above the 100-year flood elevation, or 1 m above the highest recorded flood elevation, with consideration of climate change impacts.

The pumping station should be protected to prevent vandalism and entrance by animals or unauthorized persons.

The pumping station should be located off street right-of-way in an appropriate area designated for pumping station purposes.

During preliminary location planning, consideration should be given to the potential of emergency overflow provisions and as much as practically possible the avoidance of health hazards, nuisances and adverse environmental effects.

4.1.1 Design Capacity

4.1.1.1 Separate Sewer Systems

Pumps and controls should be able to pump the expected twenty-five year peak sewage flows, under normal growth conditions, with the largest capacity pump out of operation. Sewage pumping station facilities should be designed to accommodate the expected 25 year peak sewage flows by upgrading pumps and controls. See Section 3.3 for the recommended approach for the calculation of peak sewage flows. In certain cases, where it can be shown that staging of construction will be economically advantageous, lesser design periods may be used provided it can be demonstrated that the required capacity can be "on-line" when needed. Pumping station overflows shall be permitted under the requirements of Section 4.3.

If only two pumps are provided, they should have the same capacity. Each shall be capable of handling the expected peak sewage flow. Where three or more units are provided, they should be designed to fit actual flow conditions and must be of such capacity that with any one unit out of service the remaining units will have capacity to handle maximum sewage flows, taking into account head losses associated with parallel operation.

4.1.1.2 Combined Sewer Systems

It may be impractical or economical to design a sewage pumping station on a combined sewer system to pump the expected twenty-five year peak sewage flow, with the largest capacity pump out of operation. Under these conditions the following shall be considered in determining the appropriate design capacity:

- The minimization of combined sewer overflows.
- The minimization of pumping station overflows as outlined in Section 4.3.
4.1.2 Accessibility
Sewage pumping stations shall be readily accessible by maintenance vehicles during all weather conditions. The facility should be located off street right-of-way in an appropriate area designated for pumping station purposes.

4.1.3 Grit
The design of the wet wells should receive special attention and the discharge piping shall be designed to prevent grit settling in pump discharge lines of pumps not operating. Pump components shall be suitably designed for grit and pump speed shall not exceed 1800 rpm.

4.1.4 Sewer Entry
If more than one sewer enters the site of the pumping station, a junction manhole should be provided so that only a single sewer entry to the wet well is required.

4.1.5 Fencing
Pumping stations and associated facilities located in areas subject to vandalism or in areas warranting higher security may be fenced as a safety precaution. The fence shall have an opening gate for entry of vehicles and equipment, and the gate shall be kept locked to prevent vandalism.

4.1.6 Heating
Automatic heating may be required at pumping stations, to prevent freezing in cold weather and to maintain a comfortable working temperature (there may be exceptions in the case of small below ground wet well or manhole type lift stations).

4.1.7 Piping System
The design of the pumping and piping systems should account for the potential of surge, water hammer, and special requirements for pump seals associated with wastewater service.

Suction and discharge piping should be sized to accommodate expected peak hourly flows with velocities ranging from 0.8 m/s to 2.0 m/s, where feasible velocities at the low end of the range are preferable.

Consideration should be given to providing access ports for such things as sampling, swabbing, and/or flushing discharge pressure gauge(s).

4.1.8 Electrical
All wiring shall be in accordance with the requirements of the Canadian Electrical Code and the local inspection authority.

Adequate heating should be installed to provide a minimum ambient temperature of 15°C to permit the provision of dehumidification equipment in the dry side of wet well/dry well pumping stations.

4.1.9 Lighting
Lighting levels should be provided in accordance with IES (Illuminating Engineering Society) recommended practice for similar area and use classifications.
4.1.10 Safety
The design and construction of all components of wastewater pumping stations shall conform to the safety provisions of the Occupational Health and Safety and Construction Safety Legislation in the region where the pumping station is located.

4.1.11 Construction Materials
Due consideration shall be given to the selection of materials and equipment because of the presence of hydrogen sulphide and other corrosive and inflammable gases, greases, oils and other constituents present in sewage.

4.2 Design
4.2.1 Types of Pumping Systems
The type of sewage pumping station should be selected on the basis of such considerations as reliability and serviceability; operation and maintenance factors; relationship to existing stations/equipment; sewage characteristics; flow patterns and discharge; and long-term capital, operating and maintenance costs.

For large main pumping stations, wet well/dry well type stations are recommended. For smaller stations and in cases for which wet well/dry well types are not feasible, wet well (submersible) pump stations may be used if pumps can be easily removed for replacement or repairs.

4.2.2 Structures
4.2.2.1 Separation
Wet and dry wells including their superstructure shall be completely separated.

4.2.2.2 Equipment Removal
Provision shall be made to facilitate removing pumps, motors, and other mechanical and electrical equipment.

4.2.2.3 Access
Suitable and safe means of access shall be provided to dry wells of pump stations and to wet wells or to other parts of the building containing bar screens or mechanical equipment requiring inspection or maintenance. Stairways should be installed, with rest landings not to exceed 3 m vertical intervals.

4.2.3 Pumps and Pneumatic Injectors
4.2.3.1 Duplicate Units
At least two pumps or pneumatic ejectors shall be provided. A minimum of three pumps should be provided for stations handling flows greater than 4500 m3/d.

4.2.3.2 Pump Protection
The need for and the type of screening facilities required for pumping stations varies with the characteristics of the sewage, size of sewers, and the requirements of the operating authority. For wet well/dry well stations, it is generally accepted practice to provide screening in the form of a manually or mechanically cleaned bar screen. Manually cleaned bar screens should be provided with minimum 38 mm clear openings in the inclined (60°) and horizontal bars. The vertical sides should be solid. The minimum width should be 600 mm. A drain platform should be provided for screenings. Proper attention should be given to channel design to main proper approach velocities for screens. The purpose of screening is to prevent the accumulation of solids in wet wells or pumping equipment that may disrupt operation or reliability of the pumping system.
Where areas have had their classification downgraded, ensure that suitable ventilation, controls, monitoring devices, alarms, electrical code and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities) building separations and other considerations are in accordance with.

Pumps handling separate sanitary sewage from 750 mm or larger diameter sewers shall be protected by bar screens meeting the above requirements.

4.2.3.3 Pump Openings
Pumps shall be capable of passing spheres of at least 75 mm in diameter. Pump suction and discharge openings shall be at least 100 mm in diameter.

4.2.3.4 Priming
The pump shall be so placed that under normal operating conditions it will operate under a positive suction head, except as specified in Section 4.2.11.

4.2.3.5 Electrical Equipment
The wet wells of sewage pumping stations may occasionally contain flammable mixtures presenting a potentially hazardous (explosive) environment. As a minimum, electrical installations in these areas should comply with the requirements of the Canadian Electrical Code, and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities), or as otherwise required by the local inspection authority.

Provide area classifications clearly indicated on electrical drawings in accordance with the Canadian Electrical Code.

4.2.3.6 Intake
Each pump should have an individual intake. Wet well design should be such as to avoid turbulence near the intake.

4.2.3.7 Constant Speed vs. Variable Speed Pump
In certain instances, such as pumping stations discharging directly into mechanical sewage treatment plants or into other pumping stations, some means of flow pacing may be required. This can be provided by various means, depending upon the degree of flow pacing necessary. Where flow surges to treatment plants may be detrimental to the treatment process, variable speed control drives should be considered. If minor surges can be tolerated, two-speed pumps or multiple constant speed pumps can be used.

4.2.3.8 Controls
Control systems shall be of the air bubbler type or the encapsulated float type. Where PLC (Programmable Logic Controllers) form the basis of the station control system, consideration should be given to continuous level measurement via ultrasonic or submersible level transmitters. Pump control set-points are derived from the analog level signal in the PLC. For this type of installation, emergency start and stop float switches should be included to maintain station operation in the event of instrument failure.

Electrical systems and level control devices, located in the station wet wells, are to be suitably designed for the area classification. Float control should be positioned as per Section 4.2.5.5.

4.2.3.9 Alternation
Provisions shall be made to automatically alternate the pumps in use. In the event of pump failure, the alternate pump shall operate as the lead pump.
4.2.4 Valves

4.2.4.1 Suction Line
Suitable shutoff valves shall be placed on the suction line of each pump except on submersible and vacuum-primed pumps.

4.2.4.2 Discharge Line
Suitable shutoff and check valves shall be placed on the discharge line of each pump. The check valve shall be located between the shutoff valve and the pump. Check valves shall be suitable for the material being handled. Valves shall be capable of withstanding normal pressure and water hammer.

Where limited pump backspin will not damage the pump and low discharge head conditions exist, short individual force mains for each pump may be considered in lieu of discharge valves.

4.2.5 Wet Wells

4.2.5.1 Divided Wells
Where continuity of pumping station operation is important, consideration should be given to dividing the wet well into multiple sections, properly interconnected, to facilitate repairs and cleaning. Divided wet wells should also be considered for all pumping stations with capacities in excess of 100 L/sec.

4.2.5.2 Pump Cycle
For any pumping station, the wet well should be of sufficient size to allow for a minimum of a fifteen minute cycle time for each pump. For a two-pump station, the volume of the wet well in cubic metres, between pump start and pump stop should be 0.225 times the pumping rate of one pump, expressed in L/sec. For other numbers of pumps, the required volume of the wet well depends upon the operating mode of the pumping units. Maximum recommended starts per hour are 6 for dry pit motors and 12 for submersible motors.

4.2.5.3 Size
Wet well size and control settings should be based on consideration of the volume required for pump cycling; the design fill time, dimensional requirements to avoid turbulence problems; vertical separation between pump control points; inlet sewer elevation; capacity required between alarm levels and basement flooding and/or overflow elevations; etc. Wet wells should be designed to prevent septicity problems.

4.2.5.4 Floor Slope
The wet well floor shall have a minimum slope of up to 1 to 1 to the hopper bottom to prevent solids deposition and grit accumulation. The horizontal area of the hopper bottom shall be no greater than necessary for proper installation and function of the pipe inlet.

4.2.5.5 Float Controls
Float controls should be at least 300 mm vertically and 125 mm horizontally apart and positioned against a wall away from turbulent areas.

4.2.5.6 Pump Start Elevation
To minimize pumping costs and wet well depth, normal high water level (pump start elevation) may be permitted to be above the invert of the inlet sewer provided basement flooding and/or solids deposition will not occur. Where these problems cannot be avoided, the high-water level (pump start elevation) should be approximately 300 mm below the invert of the inlet sewer.
4.2.5.7 Pump Stop Elevation
Low water level (pump shut-down) should be at least 300 mm or twice the pump suction diameter, whichever is greater, above the centre line of the pump volute.

4.2.5.8 Bottom Elevation
The bottom of the wet well should be no more than D/2, nor less than D/3 below the mouth of the flared intake where turned-down, bell-mouth inlets are used. “D” being the diameter of the mouth of the flared intake.

4.2.5.9 Air Displacement
Covered wet wells shall have provisions for air displacement such as an inverted “j” tube or other means which vents to the outside.

4.2.5.10 Location of Valves
Valves should not be located in the wet well unless permitted by Regulatory Authority having jurisdiction.

4.2.6 Dry Wells

4.2.6.1 Dry Well Dewatering
A separate sump pump equipped with dual check valves shall be provided in the dry wells to remove leakage or drainage, with the discharge above the overflow level of the wet well. A connection to the pump suction is also recommended as an auxiliary feature. Water ejectors connected to a potable water supply will not be approved. All floor and walkway surfaces should have an adequate slope to a point of drainage. Pump seal water shall be piped to the sump.

4.2.6.2 Maintenance
The dry well should be equipped with a lifting beam to facilitate removal of pump motors. A roof hatch is recommended to provide access for removal of the entire pump and motor.

4.2.7 Ventilation

4.2.7.1 General
Adequate ventilation shall be provided for all pump stations. Provide ventilation systems in accordance with the Canadian Electrical Code and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities). Where the pump pit is below the ground surface, mechanical ventilation is required, so arranged as to independently ventilate the dry well and the wet well. There shall be no interconnection between the wet well and dry well ventilation systems. Ventilation must avoid dispensing contaminants throughout other parts of the pumping station, and vents shall not open into a building or connect with a building ventilation system.

4.2.7.2 Air Inlets and Outlets
In dry wells over 4.6 m deep multiple inlets and outlets are desirable. Dampers should not be used on exhaust or fresh air ducts and fine screens or other obstructions in air ducts should be avoided to prevent clogging.

4.2.7.3 Electrical Controls
Switches for operation of ventilation equipment should be marked and located conveniently. All intermittently operated ventilation equipment shall be interconnected with the respective pit lighting system. Consideration should also be given to automatic controls where intermittent operation is used. The manual lighting ventilation switch shall override the automatic controls.
Provide flow monitoring and controls as required in accordance with the Canadian Electrical Code and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities).

4.2.7.4 Fans, Heating, and Dehumidification
The fan wheels shall be fabricated from non-sparking material. Automatic heating and dehumidification equipment shall be provided in all dry wells. The electrical equipment and components shall meet the requirements in Section 4.2.3.5.

4.2.7.5 Wet Wells
Ventilation may be either continuous or intermittent and should be controlled in line with the Canadian Electrical Code and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities). Fresh air shall be forced into the wet well, by mechanical means, at a point, typically, 300 mm above the expected high liquid level. There shall be a provision for automatic blow-by to elsewhere in the well, should the fresh air inlet become submerged.

4.2.7.6 Dry Wells
Ventilation may be either continuous or intermittent and should be controlled in line with the Canadian Electrical Code and NFPA 820 (standard for fire protection in wastewater treatment and collection facilities). Ventilation shall be forced into the dry well at a point, typically, 150 mm above the pump floor, and allowed to escape through vents in the roof superstructure. A system of two speed ventilation with an initial ventilation rate of 30 changes per hour for 10 minutes and automatic changeover to 6 changes per hour may be used to conserve heat.

4.2.8 Flow Measurement
Suitable devices for measuring wastewater flow shall be provided at all pumping stations. Indicating, totalizing, and recording flow measurement shall be provided at pumping stations with a 50 l/sec or greater design peak hourly flow. Elapsed time meters used in conjunction with pumping rate tests may be acceptable for pumping stations with a design peak hourly flow up to 50 l/sec.

4.2.9 Water Supply
There shall be no physical connection between any potable water supply and a sewage pumping station which under any conditions might cause contamination of the potable water supply. If a potable water supply is brought to the station it shall be protected with a suitable backflow prevention device (see Section 4.8.2).

4.2.10 Suction Lift Pumps
4.2.10.1 General
Suction lift pumps shall be of the self-priming or vacuum-priming type and shall meet the applicable requirements of Section 4.2. Suction lift pump stations using dynamic suction lifts exceeding the limits outlined in the following sections may be approved by the appropriate reviewing agency upon submission of factory certification of pump performance and detailed calculations indicating satisfactory performance under the proposed operating conditions. Such detailed calculations must include static suction lift as measured from “lead pump off” elevation to centre line of pump suction, friction and other hydraulic losses of the suction piping, vapour pressure of the liquid, altitude correction, required net positive suction head and a safety factor of at least 1.8 metres.

The pump equipment compartment shall be above grade or offset and shall be effectively isolated from the wet well to prevent the humid and corrosive sewer atmosphere from entering the equipment compartment. Wet well access shall not be through the equipment compartment. Valves shall not be located in the wet well.
4.2.10.2 Self-Priming Pumps
Self-priming pumps shall be capable of rapid priming and re-priming at the "lead pump on" elevation. Such self-priming and re-priming shall be accomplished automatically under design operating conditions. Suction piping should not exceed the size of the pump suction and shall not exceed 7.6 m in total length. Priming lift at the "lead pump on" elevation shall include a safety factor of at least 1.2 m from the maximum allowable priming lift for the specific equipment at design operating conditions. The combined total of dynamic suction lift at the "pump off" elevation and required net positive suction head at design operating conditions shall not exceed 6.7 m.

4.2.10.3 Vacuum-Priming Pumps
Vacuum-priming pump stations shall be equipped with dual vacuum pumps capable of automatically and completely removing air from the suction lift pump. The vacuum pumps shall be adequately protected from damage due to sewage. The combined total of dynamic suction lift at the "pump off" elevation and required net positive suction head at design operating conditions shall not exceed 6.7 m.

4.2.11 Submersible Pump Stations

4.2.11.1 General
A submersible pump station in this document is defined as having one chamber for the collection of wastewater and which contains the pumps.

Submersible pump stations shall meet the applicable requirements under Sections 4.2.1 to 4.2.10 except as modified in this section.

4.2.11.2 Construction
Submersible pumps and motors shall be designed specifically for raw sewage use, including totally submerged operation during a portion of each pumping cycle. An effective method to detect shaft seal failure or potential seal failure shall be provided and the motor shall be of squirrel-cage type design without brushes or other arc-producing mechanisms.

4.2.11.3 Pump Removal
Submersible pumps shall be readily removable and replaceable without dewatering the wet well or disconnecting any piping in the wet well.

4.2.11.4 Wet Wells
See section 4.2.5 for the layout of wet wells.

4.2.11.5 Mixing for Wet Wells
Consideration should be given to mixing of the wet well by the use of flushing mechanisms which are attached to the submersible pumps and readily accessible for maintenance and inspection.

4.2.11.6 Power Supply
Pump power cables, control and alarm circuits shall be designed to provide strain relief and to allow disconnection from outside the wet well. Cable terminations shall be made outside the wet well in enclosures suitably rated for the ambient environment. Electrical project shall be positioned above expected climate change flood level. Electrical equipment should be provided in a manner than protects it from climate change.
4.2.11.7 Controls
The pump controller shall be located outside the wet well. Conduit sealing is required at the entry to field
junction boxes or pump controllers and shall be in accordance with the specific requirements of the Inspection
Authority. If conventional conduit EY type seal fittings are utilized, they shall be located such that the pump
power and/or control cables can be removed and electrically disconnected without disturbing the seal.

4.2.11.8 Power Cables
Pump motor cables shall be designed for flexibility and serviceability under conditions of extra hard usage and
shall meet the requirements of the Canadian Electrical Code. The ground fault system shall be used to de-
energize the circuit in the event of any failure in the electrical integrity of the cable.

4.2.11.9 Valves
Required valves shall be located in a separate valve pit unless their placement within the submersible pump
station itself is acceptable to the jurisdiction having authority. Accumulated water shall be drained to the wet
well or to the soil. If the valve pit is drained to the wet well, an effective method shall be provided to prevent
sewage from entering the pit during surcharged wet well conditions.

4.2.11.10 Ventilation
Gravity ventilation should not be used for submersible pump stations. Submersible pump stations should have
ventilation for the wet well as specified in 4.2.7.5. For continuous ventilation, to facilitate free movement of air,
the wet well may be exhausted at the highest elevation level in the structure.

4.2.12 Cathodic Protection
Steel fabricated pumping stations shall require cathodic protection for corrosion control. Impressed current or
magnesium anode packs are generally used for this purpose in conjunction with a suitable protective coating on
underground surfaces, applied in accordance with the manufacturer’s directions. The unit should be electrically
isolated by dielectric fittings placed on inlet and outlet pipes, anchor bolts and electrical conduit boxes.

Upon completion of the installation, the capability of the anti-corrosion system should be verified by
instrumentation. Such inspection should be carried out by a person approved by the reviewing agencies.

4.2.13 Alarm Systems
Alarm systems shall be provided for pumping stations. The alarm shall be activated in cases of power failure,
pump failure, use of the lag pump, unauthorized entry, or any cause of pump station malfunction. Pumping
station alarms shall be telemetered, including identification of the alarm condition, to a municipal facility that is
manned 24 hours a day. If such a facility is not available and 24-hour holding capacity is not provided, the alarm
may be telemetered to municipal offices during normal working hours or to the home of the person(s) in charge
of the pumping station during off-duty hours. Audio visual alarm systems with a self-contained power supply
may be acceptable in some cases in lieu of the telemetering system outlined above, depending upon location,
station holding capacity and inspection frequency.

4.3 Emergency Operation
The objective of the emergency operation is to prevent the discharge of raw or partially treated sewage to any
waters and to protect public health by preventing back-up of sewage and subsequent discharge to basements,
streets, and other public and private property.
4.3.1 **Overflow Prevention Methods**

A satisfactory method shall be provided to prevent or minimize overflows. The following methods should be evaluated on a case by case basis:

- Storage capacity, including trunk sewers, for retention of wet weather flows (storage basins must be designed to drain back into the wet well or collection system after the flow recedes); and
- An in-place or portable pump, driven by an internal combustion engine meeting the requirements of Section 4.3.3 below, capable of pumping from the wet well to the discharge side of the station.

4.3.2 **Overflow**

If the avoidance of overflows is not possible, provision shall be made for chlorination of the overflow raw sewage unless waived by the regulatory agencies. The overflow facilities should be alarmed and equipped to indicate frequency and duration of overflows, and designed to permit manual flow measurement. Where the operator is signatory to a Shellfish Conditional Area Management Plan, notification and reporting requirements of the plan shall be met. All overflows should be recorded and reported to the regulatory agencies.

4.3.3 **Equipment Requirements**

The following general requirements shall apply to all internal combustion engines used to drive auxiliary pumps, service pumps through special drives, or electrical generating equipment.

4.3.3.1 **Engine Protection**

The engine must be protected from operating conditions that would result in damage to equipment. Unless continuous manual supervision is planned, protective equipment shall be capable of shutting down the engine and activating an alarm on site and as provided in Section 3.2.13. Protective equipment shall monitor for conditions of low oil pressure and overheating, except that oil pressure monitoring will not be required for engines with splash lubrication.

4.3.3.2 **Size**

The engine shall have adequate rated power to start and continuously operate all connected loads.

4.3.3.3 **Fuel Type**

Reliability and ease of starting, especially during cold weather conditions, should be considered in the selection of the type of fuel.

4.3.3.4 **Engine Ventilation**

The engine shall be located above grade with adequate ventilation of fuel vapours and exhaust gases.

4.3.3.5 **Routine Start-up**

All emergency equipment shall be provided with instructions indicating the need for regular starting and running of such units at full loads.

4.3.3.6 **Protection of Equipment**

Emergency equipment shall be protected from damage at the restoration of regular electrical power.

4.3.4 **Engine-Driven Pumping Equipment**

Where permanently-installed or portable engine-driven pumps are used, the following requirements in addition to general requirements shall apply.
4.3.4.1 Pumping Capacity
Engine-driven pumps shall meet the design pumping requirements unless storage capacity is available for flows in excess of pump capacity. Pumps shall be designed for anticipated operating conditions, including suction lift if applicable.

4.3.4.2 Operation
The engine and pump shall be equipped to provide automatic start-up and operation of pumping equipment. Provisions shall also be made for manual start-up. Where manual start-up and operation is justified, storage capacity and alarm systems must meet the requirements of Section 4.3.4.3.

4.3.4.3 Portable Pumping Equipment
Where part or all of the engine-driven pumping equipment is portable, sufficient storage capacity to allow time for detection of pump station failure and transportation and hookup of the portable equipment shall be provided. A riser from the force main with quick-connect coupling and appropriate valving shall be provided to hook up portable pumps.

4.3.5 Engine-Driven Generating Equipment
Where permanently-installed or portable engine-driven generating equipment is used, the following requirements in addition to general requirements shall apply.

4.3.5.1 Generating Capacity
Generating unit size shall be adequate to provide power for pump motor starting current and for lighting, ventilation, and other auxiliary equipment necessary for safe and proper operation of the pumping station. Fuel storage requirement for emergency generator should be sized for the anticipated outage in the future, recognizing the potential for increase in the length of outage and potential loss of access for fuel delivery. The owner should ensure that the fuel supplier has back-up power during a power outage and can deliver fuel during the outage.

The operation of only one pump during periods of auxiliary power supply must be justified. Such justification may be made on the basis of maximum anticipated flows relative to single-pump capacity, anticipated length of power outage and storage capacity. Special sequencing controls shall be provided to start pump motors unless the generating equipment has capacity to start all pumps simultaneously with auxiliary equipment operating.

4.3.5.2 Operation
Provisions shall be made for automatic and manual start-up and load transfer. The generator must be protected from operating conditions that would result in damage to equipment. Provisions should be considered to allow the engine to start and stabilize at operating speed before assuming the load. Where manual start-up and transfer is justified, storage capacity and alarm systems must meet requirements of Section 3.3.4.3.

4.3.5.3 Portable Generating Equipment
Where portable generating equipment or manual transfer is provided, sufficient storage capacity to allow time for detection of pump station failure and transportation and connection of generating equipment shall be provided. Transportation of portable equipment to the site may be impaired due to increasingly more intense weather, which should be considered when sizing storage capacity. The use of special electrical connections and double throw switches are recommended for connecting portable generating equipment.
4.4 Instructions and Equipment
The operating authority of sewage pumping stations shall be supplied with a complete set of operational instructions, including emergency procedures, maintenance schedules, tools and such spare parts as may be necessary.

4.5 Force Mains
4.5.1 Velocity
At design average flow, a cleansing velocity of at least 0.6 metres per second shall be maintained.

4.5.2 Air Relief Valve and Blowoff
An automatic air relief valve shall be placed at high points in the force main to prevent air locking. Drain or blowoff valves should be provided at all low points in pressure sewers.

4.5.3 Termination
Force mains should enter the gravity sewer system at a point not more than 0.6 m above the flow line of the receiving manhole. A 45° bend may be considered to direct the flow downward.

4.5.4 Design Pressure
The force main and fittings, including reaction blocking, shall be designed to withstand normal pressure and pressure surges.

4.5.5 Size
Force mains shall be sized to provide sufficient flow velocity, required capacity at the available head and to withstand operating pressures as outlined in Sections 4.5.1 and 3.5.4. In general, force mains shall be a minimum of 100 mm in diameter.

4.5.6 Slope and Depth
Force main slope does not significantly affect the hydraulic design or capacity of the pipeline itself. Under no circumstance, however, shall any force main be installed at zero slope. Zero slope installation makes line filling and pressure testing difficult, and promotes accumulation of air and wastewater gases.

A forcemain should have a minimum cover of 1.8 m.

4.5.7 Special Construction
Force main construction near watercourses or used for aerial crossing shall meet applicable requirements of Sections 3.12 to 3.14.

4.5.8 Design Friction Losses
Friction losses through force mains shall be based on the Hazen Williams formula or another acceptable method. When the Hazen Williams formula is used, the following values for "C" shall be used for design.

<table>
<thead>
<tr>
<th>Material</th>
<th>C Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unlined iron or steel</td>
<td>100</td>
</tr>
<tr>
<td>All other</td>
<td>120</td>
</tr>
</tbody>
</table>

When initially installed, force mains will have a significantly higher "C" factor. The "C" factor of 120 should be considered in calculating maximum power requirements for smooth pipe.
4.5.9 Separation from Water Mains
Water mains and sewage force mains are to be installed in separate trenches. The soil between the trenches shall be undisturbed. Force mains crossing water mains shall be laid to provide a minimum vertical distance of 450 mm between the outside of the force main and the outside of the water main. The water main shall be above the force main. At crossings, one full length of water pipe shall be located so both joints will be as far from the force main as possible. Special structural support for the water main and the force main may be required.

4.5.10 Identification
Where force mains are constructed of material which might cause the force main to be confused with potable water mains, the force main should be appropriately identified.

4.6 Testing

4.6.1 General
The entire length of a force main shall be tested for leakage. If the length of a force main exceeds 400 m, the allowable leakage must not exceed the allowable leakage for a similar force main 400 m in length. All valves in the force main must be opened immediately prior to testing.

4.6.2 Leakage Test
The force main shall be filled with water, and a test pressure of 1035 kPa or equal to 1.5 times the working pressure shall be applied, measured at the lowest point in the test section. The pressure shall be maintained by pumping water from a suitable container of known volume. The amount of water used for a period of two hours shall be recorded.

4.6.3 Allowable Leakage
Allowable leakage for a force main shall be determined by the following formula:

\[L = \frac{(SD) \times P^{0.5}}{727,500} \]

Where:
- \(L \) = Allowable leakage in litres/hour
- \(S \) = Length of pipe in metres
- \(D \) = Nominal diameter of pipe in mm
- \(P \) = Test pressure in kPa

Allowable leakage for closed metal seated valves is 1.2 mL per mm of nominal valve diameter per hour. The maximum test section should be 400m or as directed by the regulatory agency having jurisdiction.
Chapter 5 Wastewater Treatment Facilities .. 91

5.1 Definition of Wastewater Treatment Plant.. 91
5.2 Effluent Quality.. 91
5.3 Site Considerations.. 91
 5.3.1 Plant Location... 91
 5.3.1.1 Separation Distances .. 92
 5.3.2 Flood Protection... 92
 5.3.3 General Plant Layout... 92
 5.3.4 Provision for Future Expansion .. 93
5.4 General Design Requirements... 93
 5.4.1 Type of Treatment... 93
 5.4.2 Engineering Data for New Process Evaluation... 94
 5.4.3 Design Period... 94
 5.4.3.1 Treatment Plant Design Capacity ... 94
 5.4.3.2 Hydraulic Capacity... 95
 5.4.3.2.1 Hydraulic Flow Definitions and Identification ... 95
 5.4.3.2.2 Hydraulic Capacity for Wastewater Facilities to Serve New Collection Systems 95
 5.4.3.3 High Wet Weather Flows ... 96
 5.4.3.4 Flow Equalization .. 96
 5.4.3.3 Organic Design Loads .. 96
 5.4.3.3.1 Organic Load Definitions and Identification ... 96
 5.4.3.3.2 Design of Organic Capacity of Wastewater Treatment Facilities to Serve Existing Collection Systems .. 96
 5.4.3.3.3 Design of Organic Capacity of Wastewater Treatment Facilities to Serve New Collection Systems ... 97
 5.4.3.4 Shock Effects... 97
 5.4.3.5 Design Capacity of Various Plant Components (Without Flow Equalization) 97
 5.4.4 Conduits... 98
 5.4.5 Arrangement of Units... 99
 5.4.6 Component Back-up Requirements ... 99
 5.4.7 Flow Division Control.. 99
 5.4.8 Plant Hydraulic Gradient.. 99
5.5 Plant Details... 100
5.5.1 Installation of Mechanical Equipment ... 100
5.5.2 Unit Bypasses .. 100
 5.5.2.1 Removal from Service General ... 100
 5.5.2.2 Unit Bypass During Construction ... 100
5.5.3 Overflows ... 100
5.5.4 Construction Materials ... 101
5.5.5 Painting ... 101
5.5.6 Operating Equipment ... 101
5.5.7 Erosion Control During Construction ... 102
5.5.8 Grading and Landscaping .. 102
5.5.9 Cathodic Protection ... 102
5.6 Plant Outfalls ... 102
 5.6.1 Discharge Impact Control ... 102
 5.6.1.1 Submerged Outlet ... 102
 5.6.1.2 Dispersion of Flow ... 102
 5.6.2 Protection and Maintenance ... 102
 5.6.3 Sampling Provisions ... 102
5.7 Essential Facilities ... 103
 5.7.1 Emergency Power Facilities .. 103
 5.7.1.1 General .. 103
 5.7.1.2 Power for Aeration ... 103
 5.7.1.3 Power for Disinfection .. 103
 5.7.1.4 Power for Data Loggers ... 103
 5.7.2 Water Supply .. 103
 5.7.2.1 General .. 103
 5.7.2.2 Direct Connections ... 103
 5.7.2.3 Indirect Connections .. 104
 5.7.2.4 Separate Potable Water Supply .. 104
 5.7.2.5 Separate Non-Potable Water Supply .. 104
 5.7.3 Sanitary Facilities ... 104
 5.7.4 Floor Slope ... 104
 5.7.5 Stairways .. 104
 5.7.6 Wastewater Flow Measurement ... 105
 5.7.6.1 Location .. 105
5.8 Safety

5.8.1 General

5.8.2 Hazardous Chemical Handling
- **5.8.2.1 Contaminant Materials**
- **5.8.2.2 Chemical Storage and Handling Areas**
- **5.8.2.3 Secondary Containment**
- **5.8.2.4 Underground Storage**
- **5.8.2.5 Liquified Gas Chemicals**
- **5.8.2.6 Splash Guards**
- **5.8.2.7 Piping, Labelling, Coupling Guards, Location**
- **5.8.2.8 Protective Clothing or Equipment**
- **5.8.2.9 Warning Systems and Signs**
- **5.8.2.10 Dust Collection**
- **5.8.2.11 Eyewash Fountains and Safety Showers**

5.8.3 Hazardous Chemical Container Identification

5.9 Laboratory

5.9.1 General

5.9.2 Category I: Basic Operational Testing
- **5.9.2.1 Location and Space**
- **5.9.2.2 Design and Materials**

5.9.3 Category II: Intermediate Laboratory Testing
- **5.9.3.1 Location and Space**
- **5.9.3.2 Floors**
- **5.9.3.3 Cabinets and Bench Tops**
- **5.9.3.4 Fume Hoods, Sinks, and Ventilation**
 - **5.9.3.4.1 Fume Hoods**
 - **5.9.3.4.2 Sinks**
 - **5.9.3.4.3 Ventilation**
- **5.9.3.5 Balance and Table**
- **5.9.3.6 Equipment, Supplies, and Reagents**
- **5.9.3.7 Utilities**
5.9.3.7.1 Power Supply ... 110
5.9.3.7.2 Laboratory Water ... 110
5.9.3.8 Safety .. 110
 5.9.3.8.1 Equipment .. 110
 5.9.3.8.2 Eyewash Fountains and Safety Showers .. 110

5.9.4 Category III: Advanced Laboratory Testing. ... 111
 5.9.4.1 Location and Space.. 111
 5.9.4.2 Floor and Doors ... 111
 5.9.4.2.1 Floors .. 111
 5.9.4.2.2 Doors .. 111
 5.9.4.3 Cabinets and Bench Tops ... 111
 5.9.4.3.1 Cabinets .. 111
 5.9.4.3.2 Benchtops .. 112
 5.9.4.4 Hoods .. 112
 5.9.4.4.1 General ... 112
 5.9.4.4.2 Fume Hoods ... 112
 5.9.4.4.3 Canopy Hoods .. 113
 5.9.4.5 Sinks, Ventilation, and Lighting .. 113
 5.9.4.5.1 Sinks ... 113
 5.9.4.5.2 Ventilation .. 113
 5.9.4.5.3 Lighting ... 113
 5.9.4.6 Balance and Table .. 113
 5.9.4.6.1 Microscope ... 113
 5.9.4.7 Equipment, Supplies, and Reagents ... 113
 5.9.4.8 Utilities and Services .. 114
 5.9.4.8.1 Power Supply ... 114
 5.9.4.8.2 Laboratory Water ... 114
 5.9.4.8.3 Gas and Vacuum ... 114
 5.9.4.9 Safety .. 114
 5.9.4.9.1 Equipment .. 114
 5.9.4.9.2 Eyewash Fountains and Safety Showers .. 114

5.10 References ... 114
Chapter 5 Wastewater Treatment Facilities

Refer to CSA S900.1-2018 Climate Change Adaptation For Wastewater Treatment Plants.

5.1 Definition of Wastewater Treatment Plant
“Wastewater Treatment Plant (WWTP)” means a facility for the treatment of sanitary wastewater with a discharge of the treated effluent off the site, or effluent dispersal (subsurface or surface irrigation).

5.2 Effluent Quality
The required degree of wastewater treatment shall be based on the effluent requirements and water quality standards established by the regulator and/or appropriate federal regulations including discharge permit requirements. Treatment shall be provided in connection with all sewer installations. The engineer should confer with the regulator before proceeding with the design of wastewater infrastructure. Refer to WSER requirements for minimum effluent quality limits.

The typical level of treatment required for any new treatment plant in Atlantic Canada is secondary treatment with disinfection. Higher levels of treatment may be required based on the risk to the receiving water, which the regulator may require to be evaluated by carrying out an Environmental Risk Assessment. For the procedure for carrying out these Assessments, refer to Site-Specific Application of Water Quality Guidelines in Canada: Procedures for Deriving Numerical Water Quality Objectives (2003), Canada Wide Strategy for the Management of Municipal Wastewater Effluent, Technical Supplement #2 (2008), and Canada Wide Strategy for the Management of Municipal Wastewater Effluent, Technical Supplement #3 (2008).

5.3 Site Considerations

5.3.1 Plant Location
The following items shall be considered when selecting a plant site:

- Proximity to residential areas;
- Direction of prevailing winds;
- Accessibility;
- Area available for expansion;
- Local zoning requirements;
- Local soil characteristics, geology, hydrology and topography available to minimize pumping;
- Access to receiving water;
- Downstream uses of the receiving water; including but not limited to shellfish harvesting areas, public swimming areas, drinking water supply intakes;
- Compatibility of treatment process with the present and planned future land use, including noise, potential odours, air quality and anticipated sludge processing and disposal techniques;
- Proximity to surface water supplies and water wells;
- Storm surge;
- Flood protection; and
- Climate change impacts.

Appropriate measures shall be taken to minimize adverse impacts where a site does not meet recommended guidelines for these items. Refer to CSA S900.1-2018 Climate Change Adaptation for Wastewater Treatment Plants.
5.3.1.1 Separation Distances
Separation distances should be designed to prevent the occurrence of objectionable odours in subdivisions and surface water and groundwater contamination, when wastewater treatment plants are operated normally and within designed capacities. They should not be designed to accommodate unusual upset conditions that may occur from time to time. Lesser separation distances may be approved upon receipt of permission from adjacent or nearby property owners.

Separation distances will be measured from the proposed odour producing source to the nearest neighbouring lot line. Specific separation distances are as follows:

- Mechanical plants (including aerated stabilization ponds) shall be located a minimum of 150 m from residences, 30 m from commercial-industrial developments and 30 m from the nearest property lines. Under special circumstances a lesser separation distance to residences may be adopted, provided provision for odour control equipment is provided at the plant; and
- Waste stabilization ponds (not mechanically aerated) shall be located at least 300 m from residences or as determined by the regulatory agency having jurisdiction.
- Recirculating sand or textile filters shall be located 30 m from potable water supply wells, 100 m from water supply wells immediately down slope, 3 m from any lot boundary and 9 m down slope of any lot boundary.
- For infiltration and irrigation separation distances see Sections 11.2.3.6 and 11.3.2.2 respectively.

5.3.2 Flood Protection
The treatment works structures, electrical and mechanical equipment shall be protected from physical damage from the one hundred (100) year flood. Treatment works should remain fully operational and accessible during the twenty-five (25) year flood. Designers shall account for climate change projections. Refer to CSA S900.1-2018 Climate Change Adaptation For Wastewater Treatment Plants. This applies to new construction and to existing facilities undergoing major modifications. Flood plain regulations of provincial and federal agencies shall be considered.

5.3.3 General Plant Layout
The general arrangement of the plant within the site should take into account the subsurface conditions and natural grades to provide the necessary facilities at minimum cost, as well as climate change considerations. Refer to CSA S900.1-2018 Climate Change Adaptation For Wastewater Treatment Plants.

In the layout of the plant, the designer should orient the buildings to provide adequate allowances for future linear expansions of the various treatment sections and orient the plant so that the best advantage can be taken of the prevailing wind and weather conditions to minimize odour, misting and freezing problems and energy consumption. The plant layout should also allow for the probability of snow drifting, with entrances, roadways and open tankage located so that the effect of snow drifting on operations will be minimized. The plant layout should also allow for changes in required elevation attributed to climate change.

It is not recommended that construction of any of the facilities be in close proximity to a shore line, except where this is unavoidable. Suitable measures must be taken to adequately protect the structures from the effects of wave action and shore erosion and sea level rise. Refer to CSA S900.1-2018 Climate Change Adaptation For Wastewater Treatment Plants.

Within the constraints mentioned above, the designer should work towards a plant layout where the various processing units are arranged in a logical progression to avoid the necessity for major pipelines or conduits to transmit wastewater, sludge, or chemicals from one module to the next, and also to arrange the plant layout to provide for convenience of operation and ease of flow splitting for proposed and future treatment units.
Where site roadways are provided for truck access, the road design should be sufficient to withstand the largest anticipated delivery or disposal vehicles with due allowance for vehicle turning and forward exit from the site.

In order to avoid the dangers of high voltage lines crossing the site, a high voltage pole should be located at the property line. If the distance from the terminal pole to the control building is short, the step-down transformer should be located at the terminal pole. If the distance from the terminal pole to the control building is long, the transformer should be located adjacent to the building, and the high voltage connections should be brought by underground cable to the pothead, or cable termination, at the transformer.

Wastewater treatment works sites should be adequately fenced, signed and posted to prevent unauthorized access.

5.3.4 Provision for Future Expansion

In addition to the general site considerations outlined in Section 5.3.3 there are a number of allowances needed to provide for economical and practical expansion of the wastewater treatment facilities. Key provisions include:

- Design of on-site pumping stations such that their capacity can be increased and/or parallel facilities constructed without the need for major disruption of the plant's operation;
- Layout and sizing of channels and plant piping such that additional treatment units can be added or increases in loading rates accommodated. Similarly, the layout of buildings and tankage should accommodate the location of the future stages of expansion;
- Space provision within buildings to provide for replacement of equipment with larger capacity units. This is particularly important with equipment such as pumps, blowers, boilers, heat exchangers, etc. Adequate working space shall be provided around equipment, and provision made for the removal of equipment; and,
- Sizing of inlet and outlet sewers to account for the ultimate plant capacity. Provided that problems will not occur with excessive sedimentation in the sewers, these sewers should be sized for the ultimate condition. With diffused outfalls, satisfactory port velocities can often be obtained by blocking off ports which will not be required until subsequent expansion stages.

5.4 General Design Requirements

5.4.1 Type of Treatment

A process shall be capable of providing the necessary treatment and effluent discharge control to protect the adjacent and receiving environment.

As a minimum, the following items shall be considered in the selection of the type of treatment:

- Present and future effluent requirements;
- Location of and local topography of the plant site;
- Space available for future plant construction;
- The effects of industrial wastes likely to be encountered;
- Ultimate disposal of sludge;
- System capital costs;
- System operating and maintenance costs, including basic energy requirements;
- Process complexity governing operating personnel requirements;
- Environmental impact on present and future adjacent land use;
- Wastewater characteristics and the results of any treatability or pilot plant studies;
- Reliability of the process and the potential for malfunctions or bypassing needs; and
- Climate change impacts and the effect of rising sea level on the treatment plant and its outfall.
5.4.2 Engineering Data for New Process Evaluation

The policy of the regulator is to encourage rather than obstruct the development of any methods or equipment for the treatment of wastewater. The lack of inclusion in these standards of some types of wastewater treatment processes or equipment should not be construed as precluding their use. The regulator may approve other types of wastewater treatment processes and equipment under the condition that the operational reliability and effectiveness of the process or device shall have been demonstrated with a suitably-sized prototype unit operating at its design load conditions, to the extent required.

The regulator may require the following:
- Monitoring observations, including tests results and engineering evaluations, demonstrating the efficiency of such processes;
- Detailed description of the test methods;
- Testing, including appropriately composite samples, under various ranges of strength and flow rates (including diurnal variations) and waste temperatures over a sufficient length of time to demonstrate performance under climatic and other conditions which may be encountered in the area of the proposed installations; and
- Other appropriate information.

The reviewing authority may require that appropriate testing be conducted and evaluations be made under the supervision of a competent process engineer other than those employed by the manufacturer, patent holder or developer.

5.4.3 Design Period

The design period shall be clearly identified in the engineering report or facilities plan as required in Chapter 1.

Factors which will have an influence on the design period of wastewater treatment works include the following:
- Population growth rates;
- Prevailing financing interest rates;
- Inflation rates;
- Ease of expansion of facilities;
- Time requirements for design and construction or expansion; and
- Anticipated climate change impacts.

Wherever possible, wastewater treatment plants should be designed for the flows expected to be received 20 years hence, under normal growth conditions. In certain cases, where it can be shown that staging of construction will be economically advantageous, lesser design periods may be used provided it can be demonstrated that the required capacity can be "on line" when needed.

5.4.3.1 Treatment Plant Design Capacity

The wastewater treatment facility design capacity is the design average flow at the design average BOD5.

The plant design flow selected shall meet the appropriate effluent and water quality standards that are set forth in the discharge permit, as well as the requirements of the federal WSER legislation. The design of treatment units that are not subject to peak hourly flow requirements shall be based on the design average flow. For plants subject to high wet weather flows or overflow detention pumpback flows, the design maximum day flows that the plant is to treat on a sustained basis should be specified. Climate change projections are to be considered in the hydraulic design of the treatment plant.
5.4.3.2 Hydraulic Capacity

5.4.3.2.1 Hydraulic Flow Definitions and Identification

The following flows for the design year shall be identified and used as a basis for design for sewers, lift stations, wastewater treatment plants, treatment units, and other wastewater handling facilities. Where any of the terms defined in this section are used in these design standards, the definition contained in this Section applies.

The design average flow is the average of the daily volumes to be received for the continuous 12 month period expressed as a volume per unit time, however, the design average flow for facilities having critical seasonal high hydraulic loading periods (e.g., recreational areas, campuses, industrial facilities) shall be based on the daily average flow during the seasonal period. Climate change projections should be considered for daily volumes.

The design maximum day flow is the largest volume of flow to be received during a continuous 24 hour period expressed as a volume per unit time.

The design peak hourly flow is the largest volume of flow to be received during a one hour period expressed as a volume per unit time.

The design peak instantaneous flow is the instantaneous maximum flow rate to be received.

Design Minimum Day Flow

The design minimum day flow is the smallest volume of flow to be received during a 24 hour period during dry weather when infiltration/inflow are at a minimum, expressed as a volume per unit time.

Initial low flow conditions must be evaluated in the design to minimize operational problems with freezing, septicity, flow measurements and solids settling. The design peak hourly flows must be considered in evaluating unit processes, pumping, piping, etc.

- The sizing of wastewater facilities receiving flows from existing wastewater collection systems shall be based on projections made from measured flow data.
- At least one year’s flow data should be taken as the basis for determining the various critical flow conditions.
- The probable degree of accuracy of data and projections shall be evaluated. This reliability estimation should include an evaluation of the accuracy of existing data, as well as an evaluation of the reliability of estimates of flow reduction anticipated due to infiltration/inflow (I/I) reduction or flow increases due to elimination of sewer bypasses and backups.
- Critical data and methodology used shall be included. It is recommended that graphical displays of critical peak wet weather flow data, including climate change projections be included for a sustained wet weather flow period of significance to the project.

5.4.3.2.2 Hydraulic Capacity for Wastewater Facilities to Serve New Collection Systems

- The sizing of wastewater facilities receiving flows from new wastewater collection systems shall be based on an average daily flow of 380 L per capita plus wastewater flow from industrial plants and major institutional and commercial facilities unless water use data or other justification upon which to better estimate flow is provided.
- The 380 L/cap/d figure shall be used in conjunction with an extraneous flow allowance (see Section 3.3) intended to cover infiltration.
- If the new collection system is to serve existing development the likelihood of I/I contributions from existing service lines and non-wastewater connections to those service lines shall be evaluated and wastewater facilities designed accordingly.
5.4.3.2.3 High Wet Weather Flows
If unusually high flows are encountered during wet weather periods, a thorough investigation of the collection system should be made and a program for corrective action initiated.

5.4.3.2.4 Flow Equalization
Facilities for the equalization of flows and organic shock loads shall be considered at all plants which are critically affected by surge loadings. The sizing of the flow equalization facilities should be based on data obtained herein and from Section 3.3.

5.4.3.3 Organic Design Loads
5.4.3.3.1 Organic Load Definitions and Identification
The following organic loads for the design year shall be identified and used as a basis for design of wastewater treatment facilities. Where any of the terms defined in this Section are used in these design standards, the definition contained in this Section applies.

Biochemical Oxygen Demand
The 5-day Biochemical Oxygen Demand (BOD₅) is defined as the amount of oxygen required to stabilize biodegradable organic matter under aerobic conditions within a five day period in accordance with Standard Methods for the Examination of Water and Wastewater. Total 5-day Biochemical Oxygen Demand (TBOD₅) is equivalent to BOD₅ and is sometimes used in order to differentiate carbonaceous plus nitrogenous oxygen demand from strictly carbonaceous oxygen demand.

The Carbonaceous 5-day Biochemical Oxygen Demand (CBOD₅) is defined as BOD₅ less the nitrogenous oxygen demand of the wastewater. The carbonaceous 5-day Biochemical Oxygen Demand (CBOD₅) is defined as BOD₅ less the nitrogenous oxygen demand of the wastewater. See Standard Methods for the Examination of Water and Wastewater.

Design Average BOD₅
The design average BOD₅ is generally the average of the organic load to be received for a continuous 12-month period for the design year expressed as weight per day, however, the design average BOD₅ for facilities having critical seasonal high loading periods (e.g., recreational areas, campuses, industrial facilities) shall be based on the average organic load to be received during the seasonal period.

Design Maximum Day BOD₅
The design maximum day BOD₅ is the largest amount of organic load to be received during a continuous 24 hour period expressed as weight per day.

Design Peak Hourly BOD₅
The design peak hourly BOD₅ is the largest amount of organic load to be received during a one hour period expressed as weight per day.

5.4.3.3.2 Design of Organic Capacity of Wastewater Treatment Facilities to Serve Existing Collection Systems
• Projections shall be made from actual waste load data to the extent possible. When sampling, consideration should be given to flow patterns for institutions, schools, motels, etc.
• Projections shall be compared to Section 5.4.3.3.3 and an accounting made for significant variations from those values.
• Impact of industrial sources shall be documented. For projects with significant industrial contributions,
evidence of adequate pretreatment strategies shall be included along with documentation that industries are aware of the pretreatment limitations and user costs associated with the project. Documentation of the individual industrial participation in the project plan including user charges shall be provided.

- Septage and leachate may contribute significant organic load and other materials which can cause operational problems and non-compliance with permit limitations. If septage or leachate is to be discharged to the wastewater treatment facility, consult the regulator.

5.4.3.3 Design of Organic Capacity of Wastewater Treatment Facilities to Serve New Collection Systems

- Domestic waste treatment design shall be on the basis of at least 0.08 kg of BOD₅ per capita per day and 0.09 kg of suspended solids per capita per day, unless information is submitted to justify alternate designs. If nitrification is required, 0.016 kg TKN per capita per day may be used.
- When garbage grinders are used in areas tributary to a domestic treatment plant, the design basis should be increased to 0.10 kg of BOD₅ per capita per day and 0.11 kg pounds of suspended solids per capita per day.
- Impact of industrial sources shall be documented. For projects with significant industrial contributions, evidence of adequate pretreatment strategies shall be included along with documentation that industries are aware of the pretreatment limitations and user costs associated with the project. Documentation of the individual industrial participation in the project plan including user charges shall be provided.
- Septage and leachate may contribute significant organic load and other materials which can cause operational problems and non-compliance with permit limitations. If septage or leachate is to be discharged to the wastewater treatment facility, consult the provincial regulator.
- Data from similar municipalities may be utilized in the case of new systems, however, thorough investigation that is adequately documented shall be provided to the reviewing authority to establish the reliability and applicability of such data.

5.4.3.4 Shock Effects
The shock effects of high concentrations and diurnal peaks for short periods of time on the treatment process, particularly for small treatment plants, shall be considered.

5.4.3.5 Design Capacity of Various Plant Components (Without Flow Equalization)
In general, all components of mechanical wastewater treatment plants should be hydraulically capable of handling the anticipated peak wastewater flow rates without overtopping channels and/or tankage. From a process point-of-view, however, the design of various sections of wastewater treatment plants should be based upon the following hydraulic, organic and inorganic loading rates:

Wastewater Pumping Stations

- Peak Hourly Flow

Screening

- Peak Hourly Flow

Grit Removal

- Peak Hourly Flow

Primary Sedimentation

- Peak Hourly Flow
- Flow rate
- Peak solids loading rate

Aeration (without nitrification)
- Average BOD₅ loading rate is usually sufficient for predominantly domestic wastes
- Consider Peak Hourly BOD₅ for significant industrial waste loadings
- Consider seasonal variations in domestic and/or industrial BOD₅ loading rates
- Consider hydraulic detention time for short detention treatment systems (high rate processes).

Aeration (with nitrification)
- Average BOD₅ loading rate is usually sufficient for predominantly domestic wastes
- Consider Peak Hourly BOD₅ for significant industrial waste loadings
- Peak Daily Flow and Peak Daily Ammonia (total Kjeldahl nitrogen for extended aeration) loading rates.
- Daily or seasonal variations in BOD₅, ammonia, (total Kjeldahl nitrogen with extended aeration) and peak flow rates should also be taken into consideration.

Secondary Sedimentation
- Peak Hourly Flow
- Peak solids loading rate

Sludge Return
- Capacity requirements will vary with the treatment system (see Section 7.1.4).

Disinfection Systems
- Peak Hourly Flow
- Consider Peak Instantaneous Flows from batch processes

Effluent Filtration
- Peak Hourly Flow
- Peak flow rate, Peak solids loading rate

Outfall Sewer
- Peak Instantaneous Flow, considering bypasses

Sludge Treatment (digestion, thickening, dewatering, incineration, etc.)
- Average loading rates (hydraulic, total solids, volatile solids) unless sustained peaks are of significance to the individual treatment process.

Effluent Retention Pond
- Average Day Flow for the anticipated low flow period (in a low flow receiving stream)

5.4.4 Conduits

All piping and channels should be designed to carry the maximum expected flows. The incoming sewer should be designed for unrestricted flow. Bottom corners of the channels must be filleted. Conduits shall be designed to avoid creation of pockets and corners where solids can accumulate.

Suitable gates should be placed in channels to seal off unused sections which might accumulate solids. The use of shear gates or stop planks is permitted where they can be used in place of gate valves or sluice gates. Non-corrodible materials shall be used for these control gates.
5.4.5 Arrangement of Units
Component parts of the plant should be arranged for greatest operating and maintenance convenience, flexibility, continuity of optimum effluent quality for water quality protection, economy of function, and ease of installation of future units.

Where duplicate units are provided, a central collection and distribution point including proportional flow splitting shall be provided for the wastewater flow before each unit operation. Exceptions to this central collection and distribution point requirement may be made on a case-by-case basis when the design incorporates more than one unit process in the same physical structure.

5.4.6 Component Back-up Requirements
The components of wastewater treatment plants should be designed in such a way that equipment breakdown and normal maintenance operations can be accommodated without causing serious deterioration of effluent quality.

To achieve this, critical treatment processes should be provided in multiple units so that with the larger unit out of operation, the hydraulic capacity (not necessarily the design rated capacity) of the remaining units shall be sufficient to handle the peak wastewater flow. There should also be sufficient flexibility in capability of operation so that the normal flow into a unit out of operation can be distributed to all the remaining units. Similarly, it should be possible to distribute the flow of all of the units in the treatment process downstream of the affected process. In addition, where feasible, it should be possible to operate the sections of treatment plants as completely separate process trains to allow full-scale loading tests to be carried out.

5.4.7 Flow Division Control
Flow division control facilities shall be provided as necessary to ensure organic and hydraulic loading control to plant process units and shall be designed for easy operator access, change, observation, and maintenance. The use of upflow division boxes equipped with adjustable sharp-crested weirs or similar devices is recommended. The use of valves for flow splitting is not acceptable. Appropriate flow measurement facilities shall be incorporated in the flow division control design.

5.4.8 Plant Hydraulic Gradient
The hydraulic gradient of all gravity flow and pumped waste streams within the wastewater treatment plant, including by-pass channels, should be prepared to ensure that adequate provision has been made for all head losses. In calculating the hydraulic gradient, changes in head caused by all factors should be considered, including the following:
- Head losses due to channel and pipe wall friction;
- Head losses due to sudden enlargement or sudden contraction in flow cross section;
- Head losses due to sudden changes in direction, such as at bends, elbows, Wye branches and tees;
- Head losses due to sudden changes in slope, or drops;
- Head losses due to obstructions in conduits;
- Head required to allow flow over weirs, through flumes, orifices and other measuring, controlling, or flow division devices;
- Head losses caused by flow through comminutors, bar screens, tankage, filters and other treatment units;
- Head losses caused by air entrainment or air binding;
- Head losses incurred due to flow splitting along the side of a channel;
- Head increases caused by pumping;
- Head allowances for expansion requirements and/or process changes; and
• Head allowances due to maximum water levels in receiving waters, including predicted future sea levels and storm surges due to climate change.

5.5 Plant Details

5.5.1 Installation of Mechanical Equipment

The specifications should be so written that the installation and initial operation of major items of mechanical equipment will be inspected and approved by a representative of the manufacturer.

5.5.2 Unit Bypasses

5.5.2.1 Removal from Service General

Properly located and arranged bypass structures and piping shall be provided so that each unit of the plant can be removed from service independently. The bypass design shall facilitate plant operation during unit maintenance and emergency repair so as to minimize deterioration of effluent quality and ensure rapid process recovery upon return to normal operational mode.

Bypassing may be accomplished through the use of duplicate or multiple treatment units in any stage if the design peak instantaneous flow can be handled hydraulically with the largest unit out of service.

The actuation of all bypasses shall require manual action by operating personnel. All power-actuated bypasses shall be designed to permit manual operation in the event of power failure and shall be designed so that the valve will fail as is, upon failure of the power operator.

A fixed high water level bypass overflow should be provided in addition to a manually or power actuated bypass.

5.5.2.2 Unit Bypass During Construction

Unit bypassing during construction shall be in accordance with the plan for the method and level of treatment (including sludge processing, storage and disposal) to be achieved during construction, which shall be developed and submitted to the Regulatory Agency for review and approval and, where required under the WSER legislation for Temporary Bypass Authorization, to Environment Canada.

Plugging

Means such as drains or sumps shall be provided to completely dewater each unit to an appropriate point in the process. Due consideration shall be given to the possible need for hydrostatic pressure relief devices to prevent flotation of structures. Pipes subject to plugging shall be provided with means for mechanical cleaning or flushing.

5.5.3 Overflows

If wastewater entering the treatment plant must be pumped into the treatment units, an emergency overflow for the pumping station should be provided, if it is physically possible (see section 3.3.2). The purpose of this overflow is to prevent basement flooding by back-ups in the sewer system in the event of pumping station failure. Wherever possible, this overflow should be routed through the treatment plant disinfection systems and plant outfall sewer. If this is not possible, chlorination and de-chlorination of such overflows should be considered.

The overflow elevation and the method of activation should ensure that the maximum feasible storage of the wet well will be utilized before the controlled overflow takes place. The overflow facilities shall be alarmed and should be equipped to indicate frequency and duration of overflows and provided with facilities to permit manual flow measurement. Automatic flow measurement and recording systems may be required in certain
cases where effluent quality requirements dictate. Where the operator is signatory to a Shellfish Conditional Area Management Plan, notification and reporting requirements of the plan shall be met. All overflows should be recorded and reported to the regulatory agencies.

5.5.4 Construction Materials
Due consideration should be given to the selection of materials which are to be used in wastewater treatment works because of the possible presence of hydrogen sulphide and other corrosive gases, greases, oils and similar constituents frequently present in wastewater. This is particularly important in the selection of metals and paints. Dissimilar metals should be avoided to minimize galvanic action.

5.5.5 Painting
The use of paints containing lead or mercury shall be avoided. In order to facilitate identification of piping, particularly in the large plants, it is suggested that the different lines be colour-coded. The following colour scheme is recommended for purposes of standardization:
- Raw sludge line - gray
- Sludge recirculation suction line - brown with yellow bands
- Sludge draw off line - brown with orange bands
- Sludge recirculation discharge line - brown
- Digested sludge line - black
- Sludge gas line - red
- Natural gas line - red
- Non-potable water line - purple
- Potable water line - blue
- Fire main - red
- Chlorine line - yellow
- Sulfur Dioxide - yellow with red bands
- Sewage (wastewater) line - gray
- Compressed air line - dark green
- Process airline - light green
- Water lines for heating digesters or buildings - blue with a 150 mm red band spaced 750 mm apart
- Fuel oil/diesel - red
- Plumbing drains and vents - black
- Ferric Chloride - orange
- Polymer - unpainted PVC

The contents and direction of flow shall be stencilled on the piping in a contrasting colour.

5.5.6 Operating Equipment
A complete outfit of tools and accessories and spare parts necessary for the plant operator's use shall be provided.

A portable pump is desirable. Readily accessible storage space and work bench facilities shall be provided and consideration given to provision of a garage area which would also provide space for large equipment, maintenance and repair.
5.5.7 **Erosion Control During Construction**

Effective site erosion control shall be provided during construction as outlined in the provincial Department of the Environment document on Erosion and Sedimentation Control for Construction Sites. An approved erosion control plan is required before construction begins.

5.5.8 **Grading and Landscaping**

Upon completion of the plant, the ground shall be graded and sodded or seeded. All-weather walkways should be provided for access to all units. Where possible, steep slopes should be avoided to prevent erosion. Surface water shall not be permitted to drain into any unit. Particular care shall be taken to protect trickling filter beds, sludge beds, and intermittent sand filters from stormwater runoff. Provision should be made for landscaping, particularly when a plant must be located near residential areas.

5.5.9 **Cathodic Protection**

Steel fabricated wastewater treatment plants shall be equipped with cathodic protection for corrosion control as specified in Section 4.2.12.

5.6 **Plant Outfalls**

5.6.1 **Discharge Impact Control**

Outfall sewers shall consist of a completely piped system conforming to the requirements of Chapter 3 of these guidelines and shall not discharge into any ditch or watercourse in which adequate assimilative capacity is not available. In assessing the available assimilative capacity the proximity of other outfalls must be taken into consideration.

Consideration should be given to each of the following:

- Utilization of cascade aeration of effluent discharge to increase dissolved oxygen levels; and
- Limited or complete across-stream dispersion as needed to protect aquatic life movement and growth in the immediate reaches of the receiving water.

5.6.1.1 **Submerged Outlet**

The outfall sewer shall have its outlet submerged if physically possible. \textcolor{red}{Min 1 m required?} Where greater depths are available, one metre should be the minimum achieved depth of submergence. This should include account for future water level changes due to climate change, if this is projected to reduce the depth of submergence.

5.6.1.2 **Dispersion of Flow**

Where conditions exist that a point discharge of effluent could have deleterious effects on the receiving body of water, consideration shall be given to providing a means of effective submerged dispersion of the effluent into the receiving water.

5.6.2 **Protection and Maintenance**

The outfall sewer shall be so constructed and protected against the effects of flood water, tides, ice or other hazards as to reasonably insure its structural stability and freedom from stoppage. Hazards to navigation shall be considered in designing outfall sewers.

5.6.3 **Sampling Provisions**

All outfalls shall be designed so that a sample of the effluent can be obtained at a point after the final treatment process and before discharge to or mixing with the receiving water.
5.7 Essential Facilities

5.7.1 Emergency Power Facilities

5.7.1.1 General
All plants shall be provided with an alternate source of electric power or pumping capability to allow continuity of operation during power failures, except as noted below. Refer to Section 4.3.5 for design details. Methods of providing alternate sources include:

- The connection of at least two independent power sources such as substations able to supply power without interruption. A power line from each substation and separate routes are recommended, and will be required unless documentation is received and approved by the reviewing authority verifying that a duplicate line is not necessary;
- Portable or in-place internal combustion engine equipment which will generate electrical or mechanical energy; and
- Portable pumping equipment when only emergency pumping is required.

5.7.1.2 Power for Aeration
Standby generating capacity normally is not required for aeration equipment used in the activated sludge process. In cases where a history of long-term (4 hours or more) power outages or reduced voltage have occurred, auxiliary power for minimum aeration of the activated sludge is required. Full power generating capacity may be required by the regulator for waste discharges to certain critical stream segments such as upstream of bathing beaches, upstream of a public water supply intake, or other similar situations.

5.7.1.3 Power for Disinfection
Continuous disinfection, where required, shall be provided during all power outages. Continuous de-chlorination is required for systems that dechlorinate.

5.7.1.4 Power for Data Loggers
Computers configured to log data shall be supplied with an uninterruptable power supply (UPS). Each UPS shall monitor its own battery condition and issue alarms on low battery. UPSs configured to supply computers shall cause the computer to save all open files and data logging files, without overwriting existing files, at the time of primary power failure and again when a low battery condition occurs.

5.7.2 Water Supply

5.7.2.1 General
An adequate supply of potable water under pressure shall be provided for use in the laboratory, chlorination equipment and general cleanliness around the plant. The chemical quality should be checked for suitability for its intended uses such as heat exchangers, chlorinators, etc.

No piping or other connections shall exist in any part of the treatment works, which, under any conditions, might cause the contamination of a potable water supply. If a potable water supply is brought to the plant, it shall be protected with a suitable backflow prevention device.

5.7.2.2 Direct Connections
Potable water from a municipal or separate supply may be used directly at points above grade for the following hot and cold supplies:

- Sink;
- Water closet;
- Laboratory sink;
• Shower;
• Drinking fountain;
• Eye wash fountain; and
• Safety shower.

Hot water for any of the above units shall not be taken directly from a boiler used for supplying hot water to a sludge heat exchanger or digester heating coils.

5.7.2.3 Indirect Connections
Where a potable water supply is to be used for any purpose in a plant other than those listed in Section 4.7.2.2, a break tank, pressure pump and pressure tank shall be provided. Water shall be discharged to the break tank through an air-gap at least 150 mm above the maximum flood line or the spill line of the tank, whichever is higher.

A sign shall be permanently posted at every hose bib, faucet or sill cock located on the water system beyond the break tank to indicate that the water is not safe for drinking.

Consideration will also be given to backflow prevention devices consisting of a system of check valves and relief valves which provide protection against backflow (Reduced Pressure Zone Assemblies).

5.7.2.4 Separate Potable Water Supply
Where it is not possible to provide potable water from a public water supply, a separate well may be provided as long as sufficient pressure is available. Location and construction of the well should comply with requirements of the regulator. Requirements governing the use of the supply are those contained in Sections 5.7.2.2 and 5.7.2.3.

5.7.2.5 Separate Non-Potable Water Supply
Where a separate non-potable water supply is to be provided, a break tank will not be necessary but all sill cocks and hose bibs shall be posted with a permanent sign indicating the water is not safe for drinking.

5.7.3 Sanitary Facilities
Toilet, shower, lavatory and locker facilities should be provided in sufficient numbers and convenient locations to serve the expected plant personnel.

5.7.4 Floor Slope
Floor surfaces shall be sloped adequately to a point of drainage.

5.7.5 Stairways
Stairways shall be installed in lieu of ladders for access to units requiring routine inspection and maintenance, such as digesters, trickling filters, aeration tanks, clarifiers, tertiary filters, etc. Spiral or winding stairs are permitted only for secondary access where dual means of egress are provided.

Stairways shall have slopes between 30 and 35 degrees from the horizontal to facilitate carrying samples, tools, etc. Each tread and riser shall be of uniform dimension in each flight. Minimum tread run shall not be less than 200 mm. The sum of the tread run and riser shall not be less than 430 mm nor more than 460 mm. A stairway shall not have more than a 3 m continuous rise without a platform. The Provincial Building Code supersedes these clauses if there are contradictions between the two.
5.7.6 Wastewater Flow Measurement
Facilities for measuring and recording all wastewater flows through the treatment works shall be provided, and shall meet WSER requirements where applicable. All plant and process unit bypasses should also be equipped with flow measuring devices, such that hydraulic balances around each treatment process unit and the total plant are possible. Flow measuring devices should be located so that the flows measured are meaningful and recordable.

5.7.6.1 Location
Flow measurement equipment shall be provided to measure the following flows:
- Plant influent or effluent flow (If influent flow is significantly different from effluent flow, both shall be measured. This would apply for installations such as stabilization ponds, and plants with excess flow storage or flow equalization);
- Bypass flow around wastewater treatment plant;
- Other flows required to be monitored under the provisions of the permit to operate; and
- Other flows such as returned activated sludge, waste activated sludge, recirculation, and recycle required for plant operational control.

5.7.6.2 Equipment
Indicating, totalizing, and recording flow measurement devices shall be provided for all plants in accordance with WSER requirements. All flow measurement equipment must be sized to function effectively over the full range of flows expected and shall be protected against freezing. For plants where WSER does not apply, flow measuring devices that can be read and recorded manually shall be provided as a minimum. Potable water flow measurement may be acceptable in systems serving one building where inflow/infiltration is well controlled, upon approval from Regulatory Agency.

See Section 4.2.3.5 for the requirements concerning electrical systems and components located in enclosed or partially enclosed spaces where hazardous concentrations of flammable gases or vapors may be present.

5.7.6.3 Hydraulic Conditions
Flow measurement equipment including approach and discharge conduit configuration and critical control elevations shall be designed to ensure that the required hydraulic conditions necessary for accurate measurement are provided. Turbulence, eddy currents, air entrainment or any other aspect that upsets the normal hydraulic conditions that are necessary for accurate flow measurement shall be avoided.

5.7.7 Sampling Equipment
Effluent composite sampling equipment shall be provided at all mechanical plants with an average day flow of 2,500 m³/d (380 m³/d per 10 states) or greater and at other facilities where it is necessary to meet "Approval/Permit to Operate" requirements or monitoring requirements under WSER legislation. Composite sampling equipment shall also be provided as needed for influent sampling and for monitoring plant operations. The influent sampling point should be located prior to any process return flows.

Refer to Section 4.2.3.5 for the requirements concerning electrical systems and components located in enclosed or partially enclosed spaces where hazardous concentrations of flammable gases or vapors may be present. This paragraph shall be considered in the design and location of influent composite sampling equipment.
5.8 Safety

5.8.1 General
Adequate provision shall be made to effectively protect the operator and visitors from hazards. The following shall be provided to fulfil the particular needs of each plant:

- Enclosure of the plant site with a fence and signs designed to discourage the entrance of unauthorized persons and animals;
- Hand rails with toe-boards where appropriate and guards around tanks, trenches, pits, stairwells, and other hazardous structures where the top of the wall is less than 42 inches (1070 mm) above the surrounding ground level;
- Gratings over appropriate areas of treatment units where access for maintenance is required;
- First aid equipment;
- "No Smoking" signs in hazardous areas;
- Protective clothing and equipment as needed, such as self-contained breathing apparatus, gas detection equipment, goggles, gloves, hard hats, safety harnesses, hearing protectors, etc.;
- Portable blowers and sufficient hose;
- Portable lighting equipment complying with the Canadian Electrical Code and Provincial Electrical Code requirements;
- Gas detectors listed and labeled for use in Class I, Division 1, Group D locations;
- Appropriately-placed warning signs for slippery areas, non-potable water fixtures, low head clearance areas, open service manholes, hazardous chemical storage areas, flammable fuel storage areas, high noise areas, etc.;
- Adequate ventilation in pump station areas in accordance with Paragraph 42.7;
- Provisions for local lockout on stop motor controls;
- Provisions for confined space entry and laboratory safety in accordance with regulatory agency requirements; and
- Adequate vector control.

5.8.2 Hazardous Chemical Handling
Reference should be made to Federal "Transportation of Dangerous Goods Act" and the Provincial "Dangerous Goods and Hazardous - Wastes Management Act".

5.8.2.1 Contaminant Materials
The materials utilized for storage, piping, valves, pumping, metering, splash guards, etc., shall be specially selected considering the physical and chemical characteristics of each hazardous or corrosive chemical.

5.8.2.2 Chemical Storage and Handling Areas
Structures, rooms, and areas accommodating chemical storage and feed equipment should be arranged to provide convenient access for chemical deliveries, equipment servicing and repair, and observation of operation. It is recommended that wherever possible the storage area be separated from the main plant, and that segregated storage be provided for each chemical. Where two, or more, chemicals could react with undesirable effects, the drainage piping (if provided) from the separate chemical handling areas should not be interconnected. For dangerous materials such as gaseous chlorine, floor drains in the storage and scale rooms shall be omitted entirely, with the floors sloped towards the doors.

5.8.2.3 Secondary Containment
Chemical storage areas shall be enclosed in dikes or curbs which will contain 110% of the stored volume until it can be safely transferred to alternate storage or released to the wastewater at controlled rates which will not damage facilities, inhibit the treatment processes, or contribute to stream pollution. Liquid polymer should be
similarly contained to reduce areas with slippery floors, especially to protect travel ways. Non-slip floor surfaces are desirable in polymer handling areas.

5.8.2.4 Underground Storage
Underground storage and piping facilities for fuels or for chemicals such as alum or ferric chloride, shall be constructed in accordance with applicable provincial and federal regulations on underground storage tanks for both fuels and hazardous materials.

5.8.2.5 Liquified Gas Chemicals
Areas intended for storage and handling of chlorine and sulfur dioxide and other hazardous gases shall be properly designed and isolated. Gas detection kits, alarms, controls, safety devices, and emergency repair kits shall be provided.

5.8.2.6 Splash Guards
All pumps or feeders for hazardous or corrosive chemicals shall have guards which will effectively prevent spray of chemicals into space occupied by personnel. The splash guards are in addition to guards to prevent injury from moving or rotating machinery parts.

5.8.2.7 Piping, Labelling, Coupling Guards, Location
All piping containing or transporting corrosive or hazardous chemicals shall be identified with labels every 3 m and with at least two labels in each room, closet or pipe chase. Colour coding may also be used but is not an adequate substitute for labelling.

All connections (flanged or other type), except adjacent to storage or feeder areas, shall have guards which will direct any leakage away from space occupied by personnel. Pipes containing hazardous or corrosive chemicals should not be located above shoulder level except where continuous drip collection trays and coupling guards will eliminate chemical spray or dripping on to personnel.

5.8.2.8 Protective Clothing or Equipment
The following items of protective clothing or equipment shall be available and utilized for all operations or procedures where their use will minimize injury hazard to personnel:

- Self-contained air supply system recommended for protection against chlorine;
- Chemical worker’s goggles or other suitable goggles (safety glasses are insufficient);
- Face masks or shields for use over goggles;
- Dust mask to protect the lungs in dry chemical areas;
- Rubber gloves;
- Rubber aprons with leg straps;
- Rubber boots (leather and wool clothing should be avoided near caustics); and
- Safety harness and line.

5.8.2.9 Warning Systems and Signs
Facilities shall be provided for automatic shut-down of pumps and sounding of alarms when failure occurs in a pressurized chemical discharge line.

Warning signs requiring use of goggles shall be located near chemical unloading stations, pumps and other points of frequent hazard.
5.8.2.10 Dust Collection
Dust collection equipment shall be provided to protect personnel from dusts injurious to the lungs or skin and to prevent polymer dust from settling on walkways. The latter is to minimize slick floors which result when a polymer covered floor becomes wet.

5.8.2.11 Eyewash Fountains and Safety Showers
Eyewash fountains and safety showers utilizing an approved flushing fluid (potable water, preserved water, preserved buffered saline solution or other medically acceptable solutions) shall be provided on each floor level or work location involving hazardous or corrosive chemical storage, mixing (or slaking), pumping, metering, or transportation unloading. These facilities shall be as close as practical to work location and no more than 7.5 m from points of chemical exposure and shall be fully operable during all weather conditions.

Each eyewash fountain shall be supplied with flushing fluid at a tepid temperature (16 °C to 38 °C) suitable to provide at least 15 minutes of continuous irrigation of the eyes at a rate of 1.5 L/minute, or as required by the SDS for the types of hazardous chemical being handled at the facility. Each emergency shower shall be capable of discharging at least 76 L/minute of flushing fluid at a tepid temperature (16 °C to 38 °C) to provide at least 15 minutes of continuous flushing and should be at pressures of 210 kPa to 345 kPa. Anti-scalding devices shall be provided as required to maintain a relatively constant temperature. Refer to ANSI standard Z358.1-2014 "Emergency Eyewash and Shower Equipment" for more information.

5.8.3 Hazardous Chemical Container Identification
The identification and hazard warning data included on shipping containers, when received, shall appear on all containers (regardless of size or type) used to store, carry, or use a hazardous substance. Wastewater and sludge sample containers should be adequately labeled. Below is an example of a suitable label to identify a wastewater sample as a hazardous substance:

```
RAW SEWAGE WASTEWATER
Sample point No. ______
Contains Harmful Bacteria.
May contain hazardous or toxic material.
Do not drink or swallow.
```

5.9 Laboratory

5.9.1 General
All treatment plants shall include a laboratory for making the necessary analytical determinations and operating control tests, except for plants utilizing only processes not requiring laboratory testing for plant control where satisfactory off-site laboratory provisions are made to meet the permit monitoring requirements. For plants where a fully equipped laboratory is not required, the requirements for utilities, fume hoods, etc., may be reduced. The laboratory shall have sufficient size, bench space, equipment, and supplies to perform all self-monitoring analytical work required by discharge permits, and to perform the process control tests necessary for good management of each treatment process included in the design.

The facilities and supplies necessary to perform analytical work to support industrial waste control programs will normally be included in the same laboratory. The laboratory arrangement should be sufficiently flexible to allow future expansion should more analytical work be needed. Laboratory instrumentation and size should reflect treatment plant size, staffing requirements, process complexity, and applicable certification requirements.
Experience and training of plant operators should also be assessed when determining treatment plant laboratory needs.

Consult Regulatory Agency for whether accredited laboratories are required to perform all regulatory testing.

Treatment plant laboratory needs may be divided into the following three general categories:

- Plants performing only basic operational testing; this typically includes pH, temperature, and dissolved oxygen;
- Plants performing intermediate laboratory testing (more complex operational and permit laboratory tests including biochemical oxygen demand, suspended solids, and bacterial analysis), and;
- Plants performing advanced laboratory testing (more complex operational, permit, industrial pretreatment, and multiple plant laboratory testing).

Expected minimum laboratory needs for these three plant classifications are outlined in this Section. However, in specific cases, laboratory needs may have to be modified or increased due to industrial monitoring needs or special process control requirements.

5.9.2 Category I: Basic Operational Testing

5.9.2.1 Location and Space

A floor area up to 14 m² should be adequate. It is recommended that this be at the treatment site. Another location in the community utilizing space in an existing structure owned by the involved sewer authority may be acceptable.

5.9.2.2 Design and Materials

The facility shall provide for electricity, water, heat, sufficient storage space, a sink, and a bench top. The lab components need not be of industrial grade materials. Laboratory equipment and glassware shall be of types recommended by Standard Methods for the Examination of Water and Wastewater and the reviewing authority.

5.9.3 Category II: Intermediate Laboratory Testing

5.9.3.1 Location and Space

The laboratory size should be based on providing adequate room for the equipment to be used. In general, the laboratories for this category of plant should provide a minimum of approximately 28 m² of floor space. The laboratory should be located at the treatment site on ground level. It shall be isolated away from vibrating, noisy, high-temperature machinery or equipment which might have adverse effects on the performance of laboratory staff or instruments.

5.9.3.2 Floors

Floor surfaces should be fire resistant, and highly resistant to acids, alkalis, solvents, and salts.

5.9.3.3 Cabinets and Bench Tops

Laboratories in this category usually perform both the permit testing and operational control monitoring utilizing "acids" and "bases" in small quantities, such that laboratory grade metal cabinets and shelves are not mandatory. The cabinets and shelves selected may be of wood or other durable materials. Bench tops should be of acid resistant laboratory grade materials for protection of the non-acid proof cabinets. Glass doors on wall-hung cabinets are not required. One or more cupboard style base cabinets should be provided. Cabinets with drawers should have stops to prevent accidental removal. Cabinets for Category II laboratories are not required to have gas, air, vacuum, and electrical service fixtures. Built-in shelves should be adjustable.
5.9.3.4 Fume Hoods, Sinks, and Ventilation

5.9.3.4.1 Fume Hoods
Fume hoods shall be provided for laboratories in which required analytical works results in the production of noxious fumes.

5.9.3.4.2 Sinks
A laboratory grade sink and drain trap shall be provided.

5.9.3.4.3 Ventilation
Laboratories should be air conditioned. In addition, separate exhaust ventilation should be provided.

5.9.3.5 Balance and Table
An analytical balance of the automated digital readout, single pan 0.1 mg sensitivity type shall be provided. A heavy special-design balance table which will minimize vibration of the balance is recommended. It shall be located as far as possible from windows, doors, or other sources of drafts or air movements, so as to minimize undesirable impacts from these sources upon the balance.

5.9.3.6 Equipment, Supplies, and Reagents
The laboratory shall be provided with all of the equipment, supplies, and reagents that are needed to carry out all of the facility's analytical testing requirements. If any required analytical testing produces malodorous or noxious fumes, the engineer should verify that the in-house analysis is more cost-effective than use of an independent off-site laboratory. Composite samples may be required to satisfy permit sampling requirements. Permit to operate, process control, and industrial waste monitoring requirements should be considered when specifying equipment needs. References such as Standard Methods for the Examination of Water and Wastewater and the U.S.E.P.A. Analytical Procedures Manual should be consulted prior to specifying equipment items.

5.9.3.7 Utilities
5.9.3.7.1 Power Supply
Consideration should be given to providing line voltage regulation for power supplied to laboratories using delicate instruments.

5.9.3.7.2 Laboratory Water
Reagent water of a purity suitable for analytical requirements shall be supplied to the laboratory. In general, reagent water prepared using an all glass distillation system is adequate. However, some analyses require deionization of the distilled water. Consideration should be given to softening the feed water to the still.

5.9.3.8 Safety
5.9.3.8.1 Equipment
Laboratories shall provide as a minimum the following: first aid equipment; protective clothing including goggles, gloves, lab aprons, etc.; and a fire extinguisher.

5.9.3.8.2 Eyewash Fountains and Safety Showers
Eyewash fountains and safety showers shall be provided as per Section 5.8.2.11.
5.9.4 Category III: Advanced Laboratory Testing.

5.9.4.1 Location and Space
The laboratory should be located at the treatment site on ground level, with environmental control as an important consideration. It shall be located away from vibrating, noisy, high temperature machinery or equipment which might have adverse effects on the performance of laboratory staff or instruments.

The laboratory facility needs for Category III plants should be described in the engineering design report or facilities plan. The laboratory floor space and facility layout should be based on an evaluation of the complexity, volume, and variety of sample analyses expected during the design life of the plant including testing for process control, industrial pre-treatment control, user charge monitoring, and monitoring requirements.

Consideration shall be given to the necessity to provide separate (and possibly isolated) areas for some special laboratory equipment, glassware, and chemical storage. The analytical and sample storage areas should be isolated from all potential sources of contamination. It is recommended that the organic chemical facilities be isolated from other facilities. Adequate security shall be provided for sample storage areas. Provisions for the proper storage and disposal of chemical wastes shall be made. At large plants, office and administrative space needs should be considered.

For less complicated laboratory needs bench-top working surface should occupy at least 35 percent of the total laboratory floor space. Additional floor and bench space should be provided to facilitate the performance of analysis of industrial wastes, as required by the discharge permit and the utility’s industrial waste pre-treatment program. Ceiling height should be adequate to allow for the installation of wall mounted water stills, deionizers, distillation racks, hoods, and other equipment with extended height requirements.

5.9.4.2 Floor and Doors

5.9.4.2.1 Floors
Floor surfaces should be fire resistant, and highly resistant to acids, alkalis, solvents, and salts. Floor surfaces should be a single color for ease of locating dropped items. The structural floor shall be concrete with no basement.

5.9.4.2.2 Doors
Two exit doors should be located to permit straight egress from the laboratory, preferably at least one to outside the building. Doors should have a minimum width of 915 mm and shall open in the direction of exit traffic. Panic hardware should be used. They should have large glass windows for easy visibility of approaching or departing personnel. Automatic door closers should be installed; swinging doors should not be used.

Flush hardware should be provided on doors if cart traffic is anticipated. Kick plates are also recommended.

5.9.4.3 Cabinets and Bench Tops

5.9.4.3.1 Cabinets
Wall-hung cabinets are recommended for dust-free storage of instruments and glassware. Units with sliding glass doors are recommended. A reasonable proportion of cupboard style base cabinets and drawer units should be provided. All cabinet shelving should be acid resistant and adjustable.

Drawers should slide out so that entire contents are easily visible. They should be provided with rubber bumpers and stops to prevent accidental removal. Drawers should be supported on ball bearings or nylon rollers which pull easily in adjustable steel channels. All metal drawer fronts should be double-wall construction.
The laboratory furniture shall be supplied with adequate water, gas, air, and vacuum service fixtures; traps, strainers, plugs, and tailpieces, and electrical service fixtures.

5.9.4.3.2 Benchtops
Bench tops should be constructed of materials resistant to attacks from normally used laboratory reagents. Generally, bench-top height should be 900 mm, however, areas to be used exclusively for sit-down type operations should be 760 mm high and include kneehole space. Twenty-five-millimetre overhangs and drip grooves should be provided to keep liquid spills from running along the face of the cabinet. Tops should be furnished in large sections, 32 mm thick. They should be field-joined into a continuous surface with acid, alkali, and solvent-resistant cements which are at least as strong as the material of which the top is made.

5.9.4.4 Hoods
5.9.4.4.1 General
Fume hoods to promote safety shall be provided for laboratories where required analytical work results in the production of noxious fumes. Canopy hoods over heat releasing equipment shall be provided.

5.9.4.4.2 Fume Hoods
Location
Fume hoods should be located where air disturbance at the face of the hood is minimal. Air disturbance may be created by persons walking past the hood; by heating, ventilating, or air-conditioning systems; by drafts from opening or closing a door, etc.

Safety factors should be considered in locating a hood. If a hood is situated near a doorway, a secondary means or egress must be provided. Bench surfaces should be available next to the hood so that chemicals need not be carried long distances.

Design and Material
The selection, design, and materials of construction of fume hoods and their appropriate safety alarms shall be made by considering the variety of analytical work to be performed. The characteristics of the fumes, chemicals, gases, or vapors that will or may be released by the activities therein should be considered. Special design and construction is necessary if perchloric acid use is anticipated. Consideration should be given to providing more than one fume hood to minimize potentially hazardous conditions throughout the laboratory. Air intake should be balanced against all exhaust ventilation to maintain an overall positive pressure relative to atmospheric in the laboratory.

Fume hoods are not appropriate for operation of heat-releasing equipment that does not contribute to hazards, unless they are provided in addition to those needed to perform hazardous tasks.

Mixtures
One sink should be provided inside each fume hood. A cup sink is usually adequate.

All switches, electrical outlets, and utility and baffle adjustment handles should be located outside the hood. Light fixtures should be explosion-proof.

Exhaust
Twenty-four hour continuous exhaust capability should be provided. Exhaust fans should be explosion-proof. Exhaust velocities should be checked when fume hoods are installed.
5.9.4.3 Canopy Hoods
Canopy hoods should be installed over the bench-top areas where hot plate, steam bath, or other heating equipment or heat-releasing instruments are used. The canopy should be constructed of heat and corrosion resistant material.

5.9.4.5 Sinks, Ventilation, and Lighting
5.9.4.5.1 Sinks
The laboratory should have a minimum of two sinks (not including cup sinks). At least one of them should be a double-well sink with drain boards. A sink dedicated to hand washing should be provided. Additional sinks should be provided in separate work areas as needed, and identified for the use intended.

Sinks and traps should be made of epoxy resin or plastic materials highly resistant to acids, alkalis, solvents, and salts, and should be abrasion and heat resistant, non-absorbent, and lightweight. Traps should be made of glass, plastic, or lead when appropriate and easily accessible for cleaning. Waste openings should be located toward the back so that a standing overflow will not interfere.

5.9.4.5.2 Ventilation
Laboratories should be separately air conditioned, with external air supplied for one hundred percent make-up volume. In addition, separate exhaust ventilation should be provided. Ventilation outlet locations should be remote from ventilation inlets. Consideration should be given to providing dehumidifiers. Air intake should be balanced against all supply air that is exhausted to maintain an overall positive pressure in the laboratory relative to atmospheric and other pressurized areas of the building which could be the source of airborne contaminants.

5.9.4.5.3 Lighting
Good lighting, free from shadows, must be provided for reading dials, meniscuses, etc., throughout the laboratory.

5.9.4.6 Balance and Table
An analytical balance of the automatic, digital readout, single pan, 0.1 mg sensitivity type shall be provided. A heavy special-design balance table which will minimize vibration of the balance is needed. It shall be located as far as practical from windows, doors, or other sources of drafts or air movements, so as to minimize undesirable impacts from these sources upon the balance.

5.9.4.6.1 Microscope
A binocular or trinocular microscope with a 20-watt halogen light source, phase contrast condenser, mechanical stage, 10x, 40x and 100x phase contrast objectives, wastewater reticule eyepiece and centering telescope is recommended for process control at activated sludge plants.

5.9.4.7 Equipment, Supplies, and Reagents
The laboratory shall be provided with all of the equipment, supplies, and reagents that are needed to carry out all of the facility's analytical testing requirements. Composite samplers may be required to satisfy permit sampling requirements. Permit to operate, process control, and industrial waste monitoring requirements should be considered when specifying equipment needs. Reference such as Standard Methods for the Examination of Water and Wastewater and the U.S.E.P.A. Analytical Procedures Manual should be consulted prior to specifying equipment items.
5.9.4.8 Utilities and Services
5.9.4.8.1 Power Supply
Consideration should be given to providing line voltage regulation for power supplied to laboratories using delicate instruments.

5.9.4.8.2 Laboratory Water
Reagent water of a purity suitable for analytical requirements shall be supplied to the laboratory. In general, reagent water prepared using an all glass distillation system is adequate, however, some analyses require deionization of the distilled water. Consideration should be given to softening water to the still.

5.9.4.8.3 Gas and Vacuum
Natural or LP gas should be supplied to the laboratory. Digester gas should not be used.

An adequately-sized line source of vacuum should be provided with outlets available throughout the laboratory.

5.9.4.9 Safety
5.9.4.9.1 Equipment
Laboratories shall provide the following: first aid equipment; protective clothing and equipment such as goggles, safety glasses, full face shields, gloves, etc.; fire extinguishers; chemical spill kits; posting of "No Smoking" signs in hazardous area; and appropriately placed warning signs for slippery areas, non-potable water fixtures, hazardous chemical storage areas, flammable fuel storage areas, etc.

5.9.4.9.2 Eyewash Fountains and Safety Showers
Eyewash fountains and safety shall be provided as per Section 5.8.2.11.

Adequate training should be provided to the plant operating and maintenance staff so that the system can be

5.10 References
Chapter 6 Preliminary Treatment .. 115

6.1 Screening Devices ... 115

6.1.1 Bar Racks and Screens .. 115

6.1.1.1 Where Required .. 115

6.1.1.2 Selection Considerations .. 115

6.1.1.3 Location ... 115

6.1.1.3.1 Outdoors ... 115

6.1.1.3.2 Indoors ... 115

6.1.1.3.3 Access ... 115

6.1.1.3.4 Ventilation .. 115

6.1.1.4 Design and Installation .. 116

6.1.1.4.1 Bar Spacing ... 116

6.1.1.4.2 Velocities ... 116

6.1.1.4.3 Invert ... 116

6.1.1.4.4 Slope ... 116

6.1.1.4.5 Channels .. 116

6.1.1.4.6 Flow Measurement .. 117

6.1.1.5 Safety .. 117

6.1.1.5.1 Railings and Gratings ... 117

6.1.1.5.2 Mechanical Devices ... 117

6.1.1.5.3 Drainage ... 117

6.1.1.5.4 Lighting .. 117

6.1.1.6 Control Systems .. 117

6.1.1.6.1 Timing Devices ... 117

6.1.1.6.2 Electrical Systems and Components ... 117

6.1.1.6.3 Manual Override ... 117

6.1.1.7 Screenings Removal and Disposal .. 117

6.1.1.8 Auxiliary Screens ... 118

6.1.2 Fine Screens ... 118

6.1.2.1 General .. 118

6.1.2.2 Design .. 118

6.1.2.3 Electrical Fixtures and Control ... 118

6.1.2.4 Servicing .. 118
6.2 Comminutors/Grinders

6.2.1 General ... 118

6.2.2 When Required ... 118

6.2.3 Design Considerations ... 119

6.2.3.1 Location .. 119

6.2.3.2 Size ... 119

6.2.3.3 Installation .. 119

6.2.3.4 Servicing .. 119

6.2.3.5 Electrical Controls and Motors ... 119

6.3 Grit Removal Facilities

6.3.1 When Required ... 119

6.3.2 Location .. 119

6.3.3 Accessibility .. 119

6.3.4 Ventilation ... 120

6.3.5 Electrical .. 120

6.3.6 Outside Facilities .. 120

6.3.7 Design Factors ... 120

6.3.7.1 Inlet ... 120

6.3.7.2 Type and Number of Units ... 120

6.3.7.3 Grit Channels .. 120

6.3.7.3.1 Velocity ... 120

6.3.7.3.2 Weirs ... 120

6.3.7.3.3 Channel Dimensions .. 120

6.3.7.3.4 Grit Storage ... 120

6.3.7.4 Detritus Tanks ... 121

6.3.7.5 Aerated Grit Tanks .. 121

6.3.7.5.1 Air Supply ... 121

6.3.7.5.2 Inlet Conditions .. 121

6.3.7.5.3 Baffling .. 121

6.3.7.5.4 Outlet Conditions .. 121

6.3.7.5.5 Tank Dimensions .. 121

6.3.7.5.6 Velocity .. 121

6.3.7.5.7 Tank Geometry .. 121

6.3.7.5.8 Multiple Units ... 122
Chapter 6 Preliminary Treatment

This chapter outlines physical unit operations to remove debris from wastewater that can cause operational problems with downstream processes or increase maintenance of downstream equipment. Preliminary treatment is typically considered the headworks of a plant and includes screening and grit removal.

6.1 Screening Devices

6.1.1 Bar Racks and Screens

6.1.1.1 Where Required
Coarse bar racks or screens shall be provided as the first treatment stage for the protection of plant equipment against reduced operating efficiency, blockage, or physical damage. Screening of sewage can be categorized according to screen opening size as follows:

- Trash racks and bypass screens: greater than 25 to 45 mm (1 to 1.8 in) opening,
- Coarse screens: greater than 6 to 25 mm (0.25 to 1 in) opening,
- Fine screens: greater than 1 to 6 mm (0.04 to 0.25 in) opening, and
- Micro-screens: smaller than 1 mm (0.04 in) openings.

6.1.1.2 Selection Considerations
When considering which types of screening devices should be used, whether manually or mechanically screened, the following factors should be considered:

- Effect on downstream treatment and sludge disposal operations;
- Possible damage to comminutor or barminutor devices caused by stones or coarse grit particles;
- Head losses of the various alternative screening devices;
- Maintenance requirements;
- Screenings disposal requirements, and quantities of screenings; and
- Requirements for a standby unit.

Provision for the removal, drainage, washing, storage and ultimate disposal of accumulated screenings should be provided when manually or mechanically cleaned screens are used (refer to section 6.1.1.7).

6.1.1.3 Location

6.1.1.3.1 Outdoors
Screening devices installed outside shall be protected from freezing and be resilient to climate change impact.

6.1.1.3.2 Indoors
Screening devices installed in a building where other equipment or offices are located should be separated from the remainder of the building, provided with separate outside entrances and provided with adequate means of ventilation.

6.1.1.3.3 Access
Screens located in pits more than 1.2 m deep shall be provided with stairway access. Access ladders are acceptable for pits less than 1.2 m deep, in lieu of stairways.

6.1.1.3.4 Ventilation
Fresh air shall be forced into enclosed screening device areas or into open pits more than 1.2 m deep. Dampers should not be used on exhaust or fresh air ducts and fine screens or other obstructions should be avoided to
prevent clogging. Where continuous ventilation is required, at least 12 complete air changes per hour shall be provided. Where continuous ventilation would cause excessive heat loss, intermittent ventilation of at least 30 complete air changes per hour shall be provided when workmen enter the area.

Switches for operation of ventilation equipment should be marked and located conveniently. All intermittently operated ventilation equipment shall be interconnected with the respective pit lighting system. The fan wheel should be fabricated from non-sparking material. Gas detectors shall be provided in accordance with Section 5.8.

The minimum criteria for ventilation for protection against fire and explosion of wastewater treatment and pumping facilities shall be in accordance with NFPA 820 for the designated electrical classifications.

6.1.1.4 Design and Installation

6.1.1.4.1 Bar Spacing

Manually Cleaned Screens

Clear openings between bars should be from 25 mm to 45 mm. Design and installation shall be such that they can be conveniently cleaned.

Mechanical Screens

Clear openings for mechanically cleaned screens may be as small as 15 mm.

Mechanical screens are recommended where the installation is not regularly supervised or where an increase in head results in plant bypass.

6.1.1.4.2 Velocities

At the design average rate of flow, the screen chamber should be designed to provide a velocity through the screen of approximately 0.3 metres per second to prevent settling, and a maximum velocity during wet weather periods no greater than 0.75 metres per second to prevent forcing material through the openings. The velocity shall be calculated from a vertical projection of the screen openings on the cross-sectional area between the invert of the channel and the flow line.

6.1.1.4.3 Invert

The screen channel invert should be 75 to 150 mm below the invert of the incoming sewers. To prevent jetting action, the length and/or construction of the screen channel shall be adequate to re-establish hydraulic flow pattern following the drop in elevation.

6.1.1.4.4 Slope

Manually cleaned screens, except those for emergency use, should be placed on a slope of 30 to 45 degrees from horizontal. Mechanically cleaned screens should be placed on a slope of 45 to 90 degrees from horizontal.

6.1.1.4.5 Channels

The channel preceding and following the screen shall be shaped to eliminate stranding and settling of solids and should be designed to provide equal and uniform distribution of flow to the screens. Dual channels shall be provided and equipped with the necessary gates to isolate flow from any screening unit. Provisions shall also be made to facilitate dewatering each unit.
6.1.1.4.6 Flow Measurement
When flow measuring devices need to be in a screen channel, the effect of changes in backwater elevations, due to intermittent cleaning of screens, should be considered in locating of flow measurement equipment. The flow measurement devices should be selected based on reliability and accuracy.

6.1.1.5 Safety
6.1.1.5.1 Railings and Gratings
Manually cleaned screen channels shall be protected by guard railings and deck gratings, with adequate provisions for removal or opening to facilitate raking.

Mechanically cleaned screen channels shall be protected by guard railings and deck gratings. Consideration should also be given to temporary access arrangements to facilitate maintenance and repair.

6.1.1.5.2 Mechanical Devices
Mechanical screening equipment shall have adequate removal enclosures to protect personnel against accidental contact with moving parts and to prevent dripping in multi-level installations.

A positive means of locking out each mechanical device and temporary access for use during maintenance shall be provided.

6.1.1.5.3 Drainage
Floor design and drainage shall be provided to prevent slippery areas.

6.1.1.5.4 Lighting
Suitable lighting shall be provided in all work and access areas. Refer to Section 6.1.1.6.2.

6.1.1.6 Control Systems
6.1.1.6.1 Timing Devices
All mechanical units which are operated by timing devices should be provided with auxiliary controls which will set the cleaning mechanism in operation at pre-set high-water elevation. If the cleaning mechanism fails to lower the high water, a warning should be signaled.

6.1.1.6.2 Electrical Systems and Components
Electrical systems and components (i.e. motors, lights, cables, conduits, switchboxes, control circuits, etc.) in enclosed or partially enclosed spaces where hazardous gases from elsewhere occasionally may be present (including all space above raw or partially treated wastewater) shall comply with the Canadian Electrical Code, Part 1 and the regulations under the applicable Provincial Power Standards. All electrical components must be consistent with the area classification as determined by the latest version of NFPA 820.

6.1.1.6.3 Manual Override
Automatic controls shall be supplemented by a manual override.

6.1.1.7 Screenings Removal and Disposal
A convenient and adequate means for removing screenings shall be provided. Hoisting or lifting equipment may be necessary depending on the depth of pit and amount of screenings or equipment to be lifted.

Facilities must be provided for handling, storage, and disposal of screenings in a manner acceptable to the regulatory agency. Separate grinding of screenings and return to the sewage flow is unacceptable.
Manually cleaned screening facilities shall include an accessible platform from which the operator may rake screenings easily and safely. Suitable drainage facilities shall be provided for both the platform and storage area.

6.1.1.8 Auxiliary Screens
Where mechanically operated screening or comminuting devices are used, auxiliary manually cleaned screens shall be provided. Where two or more mechanically cleaned screens are used, the design shall provide for taking any unit out of service without sacrificing the capability to handle the peak design flow.

6.1.2 Fine Screens
6.1.2.1 General
Fine screens should not be considered equivalent to primary sedimentation but may be used in lieu of primary sedimentation providing that subsequent treatment units are designed on the basis of anticipated screen performance. Where fine screens are used, additional provision for the removal of floatable oils and greases shall be considered. Selection of screen capacity should consider flow restriction due to retained solids, gummy materials, frequency of cleaning and extent of cleaning.

6.1.2.2 Design
Tests should be conducted to determine BOD$_5$ and suspended solids removal efficiencies at the design maximum day flow and design maximum day BOD$_5$ loadings. Pilot testing for an extended time is preferred.

A minimum of two fine screens shall be provided, each unit being capable of independent operation. Capacity shall be provided to treat design peak instantaneous flow with one unit out of service.

Fine screens shall be preceded by a mechanically cleaned bar screen or other protective device. Fine screens shall be protected from freezing and climate change impacts, and located to facilitate maintenance.

6.1.2.3 Electrical Fixtures and Control
Electrical fixtures and controls in screening areas where hazardous gases may accumulate shall comply with the Canadian Electrical Code and the regulations under the applicable Provincial Power Standards. All electrical components must be consistent with the area classification as determined by the latest version of NFPA 820.

6.1.2.4 Servicing
Hosing equipment (with hot and cold water) shall be provided to facilitate cleaning. Provisions shall be made for isolating or removing units from their location for servicing.

6.2 Comminutors/Grinders
6.2.1 General
Provisions for location shall be in accordance with those for screening devices, refer to Section 6.1.1.3.

6.2.2 When Required
Comminutors or grinders shall be used in plants that do not have primary sedimentation or fine screens and should be provided in cases where mechanically cleaned bar screens will not be used.
6.2.3 Design Considerations

6.2.3.1 Location
Comminutors or grinders should be located downstream of any grit removal equipment and be protected by a coarse screening device. Consideration for a different sequence may be given to suit individual cases.

6.2.3.2 Size
Comminutor or grinder capacity shall be adequate to handle the design peak hourly flow.

6.2.3.3 Installation
A screened bypass channel shall be provided. The use of the bypass channel should be automatic at depths of flows exceeding the design capacity of the comminutor or grinder.

Each comminutor or grinder that is not preceded by grit removal equipment should be protected by a 150 mm deep gravel trap.

Gates shall be provided in accordance with Section 6.1.1.4.5.

6.2.3.4 Servicing
Provision shall be made to facilitate servicing units in place and removing units from their location for servicing.

6.2.3.5 Electrical Controls and Motors
Electrical equipment in comminutor chambers where hazardous gases may accumulate shall comply with the Canadian Electrical Code and applicable Provincial Power Standards.

Motors should be protected against accidental submergence and climate change impacts.

6.3 Grit Removal Facilities

6.3.1 When Required
Grit removal is required in advance of treatment units to prevent the undue wear of machinery and the unwanted accumulation of solids in channels, settling tanks and digesters.

Grit removal facilities should be provided for all wastewater treatment plants and are required for plants receiving wastewater from combined sewers or from sewer systems receiving substantial amounts of grit. If a plant, serving a separate sewer system, is designed without grit facilities, the design shall include provisions for future installation. Consideration shall be given to possible damaging effects on pumps, comminutors and other preceding equipment, and the need for additional storage capacity in treatment units where grit is likely to accumulate.

6.3.2 Location
Grit removal facilities should be located ahead of pumps and comminuting devices. Coarse bar racks should be placed ahead of grit removal facilities.

6.3.3 Accessibility
Consideration should be given in the design of grit chambers to provide safe access to the chamber and, where mechanical equipment is involved, to all functioning parts.
6.3.4 Ventilation
Where grit removal units are installed indoor, uncontaminated air shall be introduced continuously at a rate of 12 air changes per hour, or intermittently at a rate of 30 air changes per hour. Odour control facilities may also be warranted. Refer to the latest version of NFPA 820, where the standard requires certain ventilation practices, they are intended to minimize fire and explosion hazards; these ventilation standards shall not be considered to apply to the protection of personnel from the toxic effects of exposure to gases present or the depletion of oxygen.

6.3.5 Electrical
Electrical equipment in grit removal areas where hazardous gases may accumulate shall comply with the Canadian Electrical Code and the regulations under the applicable provincial Power Standards.

6.3.6 Outside Facilities
Grit removal facilities located outside shall be protected from freezing and from climate change impacts.

6.3.7 Design Factors
6.3.7.1 Inlet
Inlet turbulence shall be minimized in channel type units.

6.3.7.2 Type and Number of Units
Plants treating sewage from combined sewers should have at least two mechanically cleaned grit removal units, with provisions for bypassing. A single manually or mechanically cleaned grit removal chamber with bypass is acceptable for small sewage treatment plants serving separate sanitary sewer systems. Facilities for larger plants serving separate sanitary sewer systems should have at least one mechanically cleaned unit with a bypass. Facilities other than channel-types are desirable if provided with adequate and flexible controls for agitation and/or air supply devices and with grit collection and removal equipment.

6.3.7.3 Grit Channels
6.3.7.3.1 Velocity
Channel-type chambers shall be designed to provide controlled velocities as close as possible to 0.30 metres per second for normal variation in flow.

6.3.7.3.2 Weirs
Flow control sections shall be of the proportional or Sutro Weir type.

6.3.7.3.3 Channel Dimensions
The minimum channel width shall be 380 mm. The minimum channel length shall be that required to settle a 0.2 mm particle with a specific gravity of 2.65, plus a fifty (50) per cent allowance for inlet and outlet turbulence.

6.3.7.3.4 Grit Storage
With permanently positioned weirs, the weir crest should be kept 150 to 300 mm above the grit channel invert to provide for storage of settled grit (weir plates that are capable of vertical adjustment are preferred since they can be moved to prevent the sedimentation of organic solids following grit cleaning). Grit storage is also a function of the frequency of grit removal.
6.3.7.4 Detritus Tanks
Detritus tanks should be designed with sufficient surface area to remove a 0.2 mm, or smaller, particle with a specific gravity of 2.65 at the expected peak flow rate. Detritus tanks, since they are mechanically-cleaned and do not need dewatering for cleaning, do not require multiple units, unless economically justifiable.

Separation of the organics from the grit before, during, or after the removal of the settled contents of the tank can be accomplished in one of the following ways:
- The removed detritus can be washed in a grit washer with the organic laden wash water being returned to the head of the detritus tank;
- A classifying-type conveyor can be used to remove the grit and return the organics to the detritus tank;
- The removed detritus can be passed through a centrifugal-type separator.

6.3.7.5 Aerated Grit Tanks
Aerated grit tanks for the removal of 0.2 mm, or larger, particles with specific gravity of 2.65, should be designed in accordance with the following parameters and as outlined in Table 6.1:

6.3.7.5.1 Air Supply
Air supply should be via air diffusers (wide band diffusion header) positioned lengthwise along one wall of the tank, 600 to 900 mm above the tank bottom. Air supply should be variable. Higher air supply rates should be used with tanks of large cross-section (i.e. greater than 3.6 m deep).

6.3.7.5.2 Inlet Conditions
Inlet flow should be parallel to induce roll pattern in tank. There shall be a smooth transition from inlet to circulation flow.

6.3.7.5.3 Baffling
A minimum of one transverse baffle near the outlet weir shall be provided. Additional transverse baffles in long tanks and longitudinal baffles in wide tanks should be considered.

6.3.7.5.4 Outlet Conditions
The outlet weir shall be oriented parallel to the direction of induced roll (i.e. at a right angle to the inlet).

6.3.7.5.5 Tank Dimensions
The lower limit of the above aeration rates are generally suitable for tanks up to 3.6 m deep and 4.3 m wide. Wider or deeper tanks require aeration rates in the upper end of the below range. Long, narrow aerated grit tanks are generally more efficient than short tanks and produce a cleaner grit. A length to width ratio is normally 1.5:1 to 3:1, but up to 5:1 is acceptable. Depth to width ratios of 1:1.5 to 1:2 are acceptable.

6.3.7.5.6 Velocity
The surface velocity in the direction of roll in tanks should be 0.45 to 0.6 m/s (tank floor velocities will be approximately 75 per cent of above). The velocity across the floor of the tank shall not be less than 0.3 m/s.

6.3.7.5.7 Tank Geometry
"Dead spaces" in aerated grit tanks are to be avoided. Tank geometry is critical with respect to the location of the air diffusion header, sloping tank bottom, grit hopper and fitting of the grit collector mechanism into the tank structure. Consultation with Equipment Suppliers is advisable.
6.3.7.5.8 Multiple Units
Multiple units are generally not required unless economically justifiable, or where the grit removal method requires bypassing of the tank (as with clam shell bucket).

Table 6.1 Typical Design Information for Aerated Grit Chambers

<table>
<thead>
<tr>
<th>Item</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detention time at peak flowrate, min</td>
<td>2 – 5</td>
<td>3</td>
</tr>
<tr>
<td>Dimensions:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth, m</td>
<td>2 – 5</td>
<td></td>
</tr>
<tr>
<td>Length, m</td>
<td>7.5 – 20</td>
<td></td>
</tr>
<tr>
<td>Width, m</td>
<td>2.5 - 7</td>
<td></td>
</tr>
<tr>
<td>Width-depth ratio</td>
<td>1:1 – 5:1</td>
<td>1.5:1</td>
</tr>
<tr>
<td>Length-width ratio</td>
<td>3:1 – 5:1</td>
<td>4:1</td>
</tr>
<tr>
<td>Air supply, m³/min · m of length</td>
<td>0.2 – 0.5</td>
<td></td>
</tr>
<tr>
<td>Grit quantities, m³/10³m³</td>
<td>0.004 – 0.200</td>
<td>0.015</td>
</tr>
</tbody>
</table>

6.3.7.6 Mechanical Grit Chambers
Specific design parameters for mechanical grit chambers will be evaluated on a case-by-case basis.

6.3.7.7 Grit Washing
The need for grit washing should be determined by the method of grit handling and final disposal.

6.3.7.8 Dewatering
Provision shall be made for isolating and dewatering each unit. The design shall provide for complete draining and cleaning by means of a sloped bottom equipped with a drain sump.

6.3.7.9 Water
An adequate supply of water under pressure shall be provided for cleanup.

6.3.8 Grit Removal
Grit facilities located in deep pits should be provided with mechanical equipment for pumping or hoisting grit to ground level. Such pits should have a stairway, approved-type elevator or man-lift, adequate ventilation and adequate lighting.

6.3.9 Grit Handling
Grit removal facilities located in deep pits should be provided with mechanical equipment for hoisting or transporting grit to ground level. Impervious, non-slip, working surfaces with adequate drainage shall be provided for grit handling areas. Grit transporting facilities shall be provided with protection against freezing and loss of material.

6.3.10 Grit Disposal
Disposal of grit in sanitary landfills or lagoons, as well as grit incineration shall be considered acceptable disposal methods. Whatever method of disposal is employed, the full spectrum of environmental considerations must be embodied in the final design.
6.4 Pre-Aeration and Flocculation

6.4.1 General
Pre-aeration of raw wastewater, may be used to achieve one or more of the following objectives:
- Odour control;
- Grease separation and increased grit removal;
- Prevention of septicity;
- Grit separation;
- Flocculation of solids;
- Maintenance of DO in primary treatment tanks at low flows;
- Increased removals of BOD and SS in primary units; and
- Minimizes solids deposits on side walls and bottom of wetwells.

Flocculation of sewage with or without coagulating aids, is worthy of consideration when it is desired to reduce the strength of sewage prior to subsequent treatment. Also, flocculation may be beneficial in pre-treating sewage containing certain industrial wastes.

6.4.2 Arrangement
The units should be designed so that removal from service will not interfere with normal operation of the remainder of the plant.

6.4.3 Pre-aeration

6.4.3.1 Air Flow Measurements
Figure 6.1 represents air flow requirements for different periods of pre-aeration.

Pre-aeration periods should be 10 to 15 minutes if odour control and prevention of septicity are the prime objectives.

6.4.4 Flocculation

6.4.4.1 Detention Period
When air or mechanical agitation is used in conjunction with chemicals to coagulate or flocculate the sewage, the detention period should be approximately 30 minutes at the design flow. However, if polymers are used this may be varied.

6.4.4.2 Stirring Devices
6.4.4.2.1 Paddles
Paddles should have a peripheral speed of 0.50 to 0.75 metres per second to prevent deposition of solids.

6.4.4.2.2 Aerators
Any of the types of equipment used for aerating activated sludge may be utilized. It shall be possible to control agitation, to obtain good mixing and maintain self-cleaning velocities across the tank floor.
6.4.4.3 Details

![Figure 6.1 Air Flow Required for Different Periods of Pre-aeration](image)

Figure 6.1 Air Flow Required for Different Periods of Pre-aeration

Inlet and outlet devices should be designed to insure proper distribution and to prevent short-circuiting. Convenient means should be provided for removing grit.

6.4.4.4 Rapid Mix

At plants where there are two or more flocculation basins utilizing chemicals, provision shall be made for a rapid mix of the sewage with the chemical so that the sewage passing to the flocculation basins will be of uniform composition. The detention period provided in the rapid mixing chamber should be very short, one-half to three minutes.

6.5 Flow Equalization

6.5.1 General

Flow equalization can reduce the dry-weather variations in organic and hydraulic loadings at any wastewater treatment plant. It should be provided where large diurnal variations are expected, and should include climate change impacts.

6.5.2 Location

Equalization basins should be located downstream of pre-treatment facilities such as bar screens, comminutors and grit chambers.
6.5.3 Type
Flow equalization can be provided by using separate basins or on-line treatment units, such as aeration tanks. Equalization basins may be designed as either in-line or side-line units. Unused treatment units, such as sedimentation or aeration tanks, may be utilized as equalization basins during the early period of design life.

6.5.4 Size
Equalization basin capacity should be sufficient to effectively reduce expected flow and load variations to the extent deemed to be economically advantageous. With a diurnal flow pattern, the volume required to achieve the desired degree of equalization can be determined from a cumulative flow plot, or mass diagram, over a representative 24-hour period. To obtain the volume required to equalize the 24-hour flow:
- Draw a line between the points representing the accumulated volume at the beginning and end of the 24-hr period. The slope of this line represents the average rate of flow.
- Draw parallel lines to the first line through the points on the curve farthest from the first line.
- Draw a vertical line between the lines drawn in No. 2. The length of this line represents the minimum required volume.

6.5.5 Operation

6.5.5.1 Mixing
Where applicable, aeration or mechanical equipment shall be provided to maintain adequate mixing. Corner fillets and hopper bottoms with draw-offs should be provided to alleviate the accumulation of sludge and grit.

6.5.5.2 Aeration
Where applicable, aeration equipment shall be sufficient to maintain a minimum of 1.0 mg/L of dissolved oxygen in the mixed basin contents at all times. Air supply rates should be a minimum of 0.15 litres per second per cubic metre storage capacity. The air supply should be isolated from other treatment plant aeration requirements to facilitate process aeration control, although process air supply equipment may be utilized as a source of standby aeration.

6.5.5.3 Controls
Inlets and outlets for all basin compartments shall be suitably equipped with accessible external valves, stop plates, weirs or other devices to permit flow control and the removal of an individual unit from service. Facilities shall also be provided to measure and indicate liquid levels and flow rates.

6.5.6 Electrical
All electrical work in housed equalization basins shall comply with the Canadian Electrical Code and the regulations under applicable Provincial Power Standards.

6.5.7 Access
Suitable access shall be provided to facilitate cleaning and the maintenance of equipment.
Chapter 7 Clarification... 126

7.1 Sedimentation Tanks... 126

7.1.1 General Design Requirements.. 126

7.1.1.1 Number of Units .. 126

7.1.1.2 Arrangement of Units .. 126

7.1.1.3 Interaction with Other Processes .. 126

7.1.1.4 Flow Distribution and Control .. 126

7.1.1.5 Tank Configuration and Proportions .. 126

7.1.1.6 Site Constraints ... 126

7.1.1.7 Size Limitations ... 127

7.1.1.8 Inlet Structures ... 127

7.1.1.9 Outlet Arrangements ... 127

7.1.1.9.1 General ... 127

7.1.1.9.2 Location ... 127

7.1.1.9.3 Weir Troughs .. 127

7.1.1.10 Submerged Surfaces ... 127

7.1.1.11 Unit Dewatering .. 127

7.1.1.12 Freeboard ... 127

7.1.1.13 Clarifier Covers ... 128

7.1.2 Types Of Settling ... 128

7.1.2.1 Type I Settling (Discrete Settling) ... 128

7.1.2.2 Type II Settling (Flocculent Settling) ... 128

7.1.2.3 Type III Settling (Hindered or Zone Settling) ... 128

7.1.2.4 Type IV Settling (Compression Settling) ... 128

7.1.3 Design Criteria .. 128

7.1.4 Sludge and Scum Removal .. 130

7.1.4.1 Scum Removal ... 130

7.1.4.2 Sludge Removal .. 130

7.1.4.2.1 Sludge Removal ... 130

7.1.4.2.2 Sludge Collection ... 130

7.1.4.2.3 Sludge Hopper ... 130

7.1.4.2.4 Cross-Collectors ... 131

7.1.4.2.5 Sludge Removal Piping .. 131
7.1.4.2.6 Sludge Removal Control.. 131

7.2 Enhanced Primary Clarification.. 131
 7.2.1 Chemical Enhancement .. 131
 7.2.1.1 Chemical Coagulants1 ... 131
 7.2.1.2 Rapid Mix .. 132
 7.2.1.3 Flocculation ... 132
 7.2.1.4 Coagulant Addition ... 132
 7.2.2 Plate and Tube Settlers ... 133
 7.2.2.1 Calculation of Settling Area ... 133
 7.2.2.2 Configuration .. 133
 7.2.3 Ballasted Floc Clarifiers ... 133
 7.2.4 Dense-Sludge Process2 ... 134

7.3 Dissolved Air Flotation ... 134
 7.3.1 Process Design Considerations and Criteria ... 134
 7.3.1.1 Types of Solids ... 135
 7.3.1.2 Hydraulic Loading Rate ... 135
 7.3.1.3 Solids-Loading Rate .. 135
 7.3.1.4 Feed-Solids Concentration ... 135
 7.3.1.5 Air-to-Solids Ratio ... 136
 7.3.1.6 Float-Blanket Depth ... 136
 7.3.1.7 Polymer Addition ... 136

7.4 Protective and Service Facilities .. 137
 7.4.1 Operator Protection .. 137
 7.4.2 Mechanical Maintenance Access ... 137
 7.4.3 Electrical Fixtures and Controls ... 137
Chapter 7 Clarification

7.1 Sedimentation Tanks

7.1.1 General Design Requirements

The need for and the design of primary sedimentation tanks will be influenced by various factors, including the following:

- The characteristics of the raw wastewater;
- The type of sludge digestion systems, either available or proposed (aerobic digestion should not be used with raw primary sludge);
- The presence, or absence, of secondary treatment following primary treatment;
- The need for handling of waste activated sludge in the primary settling tanks;
- The need for, or possible economic benefits through phosphorus removal in the primary settling tank(s).

7.1.1.1 Number of Units

Multiple units capable of independent operation are desirable and shall be provided in all plants where design average daily flows exceed 380 cubic metres per day. Plants not having multiple units shall include other provisions to assure continuity of treatment.

7.1.1.2 Arrangement of Units

Settling tanks shall be arranged in accordance with Section 5.4.5.

7.1.1.3 Interaction with Other Processes

- Pumping directly to any clarifier is prohibited, unless special provision is included in the design of pump controls. Attention should be focused so that pumps deliver smooth flow transmissions at all times, with a minimal energy gradient.
- For activated sludge plants employing high energy aeration, provisions should be made for floc to be reformed before settling.
- For primary clarifiers, tanks and equipment must be sized to not only accommodate raw waste solids but also those solids introduced by thickener overflows, anaerobic digester overflow and sometimes waste activated sludge.

7.1.1.4 Flow Distribution and Control

Effective flow measurement devices and control appurtenances (i.e., valves, gates, splitter boxes, etc.) shall be provided to permit proper proportion of flow to each unit. Parallel basins should be of the same size, otherwise flow shall be distributed in proportion to surface area.

7.1.1.5 Tank Configuration and Proportions

Consideration should be given to the probable flow pattern in the selection of tank size and shape, and inlet and outlet type and location. Generally rectangular clarifiers are designed with length-to-width ratios of at least 4:1, and width to depth ratios of 1:1 and 2.25:1.

7.1.1.6 Site Constraints

The selection of feasible clarifier alternatives should include the following site considerations:

- Wind direction;
- Proximity to residents;
- Soil conditions;
• Groundwater conditions; and
• Available space.

7.1.1.7 Size Limitations
Rectangular clarifiers shall have a maximum length of 90 m. Circular clarifiers shall have a maximum diameter of 60 m. The minimum length of flow from inlet to outlet shall be 3 m, unless special provisions are made to prevent short circuiting. The vertical side water depth shall be designed to provide an adequate separation zone between the sludge blanket and the overflow weirs. Generally, primary clarifiers have a side water depth between 3.0 to 4.6 m.

7.1.1.8 Inlet Structures
Inlet structures should be designed to dissipate the inlet velocity, to distribute the flow equally both horizontally and vertically and to prevent short-circuiting. Channels should be designed to maintain a velocity of at least 0.3 metres per second at one-half design average flow. Corner pockets and dead ends should be eliminated and corner fillets or channelling used where necessary. Provisions shall be made for elimination or removal of floating materials in inlet structures.

7.1.1.9 Outlet Arrangements
7.1.1.9.1 General
Overflow weirs shall be adjustable for levelling, and sufficiently long to avoid high heads which result in updraft currents.

7.1.1.9.2 Location
Overflow weirs shall be located to optimize actual hydraulic detention time and minimize short circuiting. Peripheral weirs shall be placed at least 0.3 m from the wall.

7.1.1.9.3 Weir Troughs
Weir troughs shall be designed to prevent submergence at maximum design flow and to maintain a velocity of at least 0.3 metres per second at one-half design average flow.

7.1.1.10 Submerged Surfaces
The tops of troughs, beams and similar submerged construction elements shall have a minimum slope of 1.4 vertical to 1 horizontal. The underside of such elements should have a slope of 1 to 1 to prevent the accumulation of scum and solids.

7.1.1.11 Unit Dewatering
Unit dewatering features shall conform to the provisions outlined in Section 4.5.3.6. The bypass design should also provide for redistribution of the plant flow to the remaining units.

7.1.1.12 Freeboard
Walls of settling tanks shall extend at least 150 mm above the surrounding ground surface and shall provide not less than 300 mm freeboard. Additional freeboard or the use of wind screens is recommended where larger settling tanks are subject to high velocity wind currents that would cause tank surface waves and inhibit effective scum removal.
7.1.1.13 Clarifier Covers
Clarifiers may be required to be covered for winter operation. The structure should be constructed with adequate head room for easy access. The structure must include adequate lighting, ventilation and heating. Humidity and condensation shall be controlled inside the structure.

7.1.2 Types Of Settling

7.1.2.1 Type I Settling (Discrete Settling)
Type I settling is assumed to occur in gravity grit chambers handling wastewater and in basins used for preliminary settling (silt removal) of surface waters. A determination of the settling velocity of the smallest particle to be 100% removed is fundamental to the design of Type I clarifiers. Because each particle is assumed to settle independently and with a constant velocity, a mathematical development is possible, based on Newton’s Law and Stokes’ Law.

7.1.2.2 Type II Settling (Flocculent Settling)
Type II settling occurs when particles initially settle independently but flocculate as they proceed to the bottom of the tank. As a result of flocculation, the settling velocities of the aggregates formed change with time, and a strict mathematical solution is not possible. Laboratory testing is required to determine appropriate values for design parameters. Type II settling can occur during clarification following fixed-film processes, primary clarification of wastewater, and clarification of potable water treated with coagulants.

Type II settling can also occur above the sludge blanket in clarifiers following activated sludge treatment; however, design procedures based on Type III settling are normally used to design these units.

7.1.2.3 Type III Settling (Hindered or Zone Settling)
Type III settling occurs in clarifiers following activated sludge processes and gravity thickeners. While Type II processes may occur to a limited extent in such units, it is Type III that governs design. In suspensions undergoing hindered settling, the solids concentration is usually much higher than in discrete or flocculent processes. As a result, the contacting particles tend to settle as a zone or blanket, and maintain the same position relative to each other.

7.1.2.4 Type IV Settling (Compression Settling)
In Type IV settling, particles have reached such a concentration that a structure is formed and further settling, can only occur by compression. This type of settling typically occurs in the lower layers of a deep sludge mass such as near the bottom of secondary clarifiers and sludge thickeners.

7.1.3 Design Criteria
Table 7.1 and 7.2 display typical design information for primary sedimentation tanks. Table 7.3 displays typical design information for secondary clarifiers for the activated-sludge process. Table 7.4 displays the ranges of overflow rates and BOD and TSS removals from high-rate clarification processes treating wet-weather flows.

Table 7.1 Typical Design Information for Primary Sedimentation Tanks

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detention time</td>
<td>h</td>
<td>1.5 – 2.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Overflow rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average flow</td>
<td>m³/m²·d</td>
<td>30 – 50</td>
<td>40</td>
</tr>
<tr>
<td>Peak hourly flow</td>
<td>m³/m²·d</td>
<td>80 – 120</td>
<td>100</td>
</tr>
</tbody>
</table>
Weir loading \(m^3/m \cdot d \) | 125 - 500 | 250
---|---|---
Detention time | h | 1.5 – 2.5 | 2.0
Overflow rate
Average flow | \(m^3/m^2 \cdot d \) | 24 – 32 | 28
Peak hourly flow | \(m^3/m^2 \cdot d \) | 48 – 70 | 60
Weir loading | \(m^3/m \cdot d \) | 125 - 500 | 250

Table 7.2 Typical Dimensional Data for Rectangular and Circular Sedimentation Tanks Used for Primary Treatment of Wastewater

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>m</td>
<td>3 – 4.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Length</td>
<td>m</td>
<td>15 – 90</td>
<td>24 – 40</td>
</tr>
<tr>
<td>Width(^a)</td>
<td>m</td>
<td>3 – 24</td>
<td>4.9 – 9.8</td>
</tr>
<tr>
<td>Flight Speed</td>
<td>m/min</td>
<td>0.6 – 1.2</td>
<td>0.9</td>
</tr>
<tr>
<td>Circular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth</td>
<td>m</td>
<td>3 – 4.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Diameter</td>
<td>m</td>
<td>3 – 60</td>
<td>12 – 45</td>
</tr>
<tr>
<td>Bottom Slope</td>
<td>mm/mm</td>
<td>1/16 – 1/6</td>
<td>1/12</td>
</tr>
<tr>
<td>Flight Speed</td>
<td>r/min</td>
<td>0.02 – 0.05</td>
<td>0.03</td>
</tr>
</tbody>
</table>

\(^a\) If widths of rectangular mechanically cleaned tanks are greater than 6 m, multiple bays with individual cleaning equipment may be used, thus permitting tank widths up to 24 m or more.

Table 7.3 Typical Design Information for Secondary Clarifiers for the Activated-Sludge Process

<table>
<thead>
<tr>
<th>Type of Treatment</th>
<th>Overflow Rate (m^3/m^2 \cdot d)</th>
<th>Solids Loading (kg/m^2 \cdot h)</th>
<th>Depth m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Peak</td>
<td>Average</td>
</tr>
<tr>
<td>Settling following air-activated sludge (excluding extended aeration)</td>
<td>16 – 28</td>
<td>36 – 56</td>
<td>4 – 6</td>
</tr>
<tr>
<td>Selectors, biological nutrient removal</td>
<td>24 – 32</td>
<td>40 – 64</td>
<td>5 – 8</td>
</tr>
<tr>
<td>Settling following extended aeration</td>
<td>8 – 16</td>
<td>24 - 32</td>
<td>1.0 - 5</td>
</tr>
<tr>
<td>Settling for phosphorus removal; effluent concentration, mg/L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total P = 2</td>
<td>24 – 32</td>
<td>16 – 24</td>
<td></td>
</tr>
<tr>
<td>Total P = 1(^a)</td>
<td>12 – 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total P = 0.2 to 0.5(^b)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Occasional chemical addition required

\(^b\) Continuous chemical addition required for effluent polishing

Notes:
1. Peak is a 2-h sustained peak.
2. Weir loading rates are used commonly in the design of clarifiers, although they are less critical in clarifier design than hydraulic overflow rates. Weir loading rates used in large tanks should preferably not exceed...
375 m3/lin m·d of weir at maximum flow when located away from the upturn zone of the density current, or 250 m3/lin m·d when located within the upturn zone. In small tanks, the weir loading rate should not exceed 125 m3/lin m·d at average flow or 250 m3/lin m·d at maximum low. The upflow velocity in the immediate vicinity of the weir should be limited to about 3.5 to 7 m/h.

Table 7.4 Ranges of Overflow Rates and BOD and TSS Removals from High-Rate Clarification Processes Treating Wet-Weather Flows

<table>
<thead>
<tr>
<th>Parameter/Process</th>
<th>Ballasted Flocculation</th>
<th>Plate and Tube Settlers</th>
<th>Dense Sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflow rates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low, m3/m2·d</td>
<td>1200 – 2900</td>
<td>880</td>
<td>2300</td>
</tr>
<tr>
<td>Medium, m3/m2·d</td>
<td>1800 – 3500</td>
<td>1200</td>
<td>2900</td>
</tr>
<tr>
<td>High, m3/m2·d</td>
<td>2300 – 4100</td>
<td>1800</td>
<td>3500</td>
</tr>
<tr>
<td>BOD removals, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At low overflow rates</td>
<td>35 – 50</td>
<td>45 – 55</td>
<td>25 – 35</td>
</tr>
<tr>
<td>At medium overflow rates</td>
<td>40 – 60</td>
<td>35 – 40</td>
<td>40 – 50</td>
</tr>
<tr>
<td>At high overflow rates</td>
<td>30 – 60</td>
<td>35 – 40</td>
<td>50 – 60</td>
</tr>
<tr>
<td>TSS removals, %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At low overflow rates</td>
<td>70 – 90</td>
<td>60 – 70</td>
<td>80 – 90</td>
</tr>
<tr>
<td>At medium overflow rates</td>
<td>40 – 80</td>
<td>65 – 75</td>
<td>70 – 80</td>
</tr>
<tr>
<td>At high overflow rates</td>
<td>30 – 80</td>
<td>40 – 50</td>
<td>70 – 80</td>
</tr>
</tbody>
</table>

7.1.4 Sludge and Scum Removal

7.1.4.1 Scum Removal
Effective scum collection and removal facilities, including baffling, shall be provided for all settling tanks. Scum baffles are to be placed ahead of the outlet weirs and extend 300 mm below the water surface. The unusual characteristics of scum which may adversely affect pumping, piping, sludge handling and disposal, should be recognized in design. Provisions may be made for the discharge of scum with the sludge; however, other special provisions for disposal may be necessary.

7.1.4.2 Sludge Removal

7.1.4.2.1 Sludge Removal
Sludge collection and withdrawal facilities shall be designed to assure rapid removal of the sludge and minimization of density currents. Suction withdrawal should be provided for activated sludge plants designed for reduction of the nitrogenous oxygen demand and is encouraged for those plants designed for carbonaceous oxygen demand reduction. Each settling tank shall have its own sludge withdrawal lines to insure adequate control of the sludge wasting rate for each tank.

7.1.4.2.2 Sludge Collection
Sludge collection mechanisms shall remain in operation during sludge withdrawal. Mechanism speeds shall be such as to avoid undue agitation while still producing desired collection results.

7.1.4.2.3 Sludge Hopper
The minimum slope of the side walls shall be 1.7 vertical to 1 horizontal. Hopper wall surfaces should be made smooth with rounded corners to aid in sludge removal. Hopper bottoms shall have a maximum dimension of 0.6 metres. Extra depth sludge hoppers for sludge thickening are not acceptable. The hoppers are to be accessible for sounding and cleaning.
7.1.4.2.4 Cross-Collectors
Cross-collectors serving one or more settling tanks may be useful in place of multiple sludge hoppers.

7.1.4.2.5 Sludge Removal Piping
Each hopper shall have an individually valved sludge withdrawal line at least 150 mm in diameter. The static head available for withdrawal of sludge shall be 760 mm or greater, as necessary to maintain a 0.9 metre per second velocity in the withdrawal line. Clearance between the end of the withdrawal line and the hopper walls shall be sufficient to prevent “bridging” of the sludge. Adequate provisions shall be made for rodding or back-flushing individual pipe runs. Piping shall also be provided to return sludge for further processing.

7.1.4.2.6 Sludge Removal Control
Separate settling tank sludge lines may drain to a common sludge well. Sludge wells equipped with telescoping valves or other appropriate equipment shall be provided for viewing, sampling and controlling the rate of sludge withdrawal from each tank hopper. The use of easily maintained sight glass and sampling valves may be appropriate. A means of measuring the sludge removal rate from each hopper shall be provided. Air lift type of sludge removal will not be approved for removal of primary sludge. Sludge pump motor control systems shall include time clocks and valve activators for regulating the duration and sequencing of sludge removal.

7.2 Enhanced Primary Clarification

7.2.1 Chemical Enhancement
Chemical coagulation of raw wastewater before sedimentation promotes flocculation of finely divided solids into more readily settleable flocs, thereby increasing SS, BOD, and phosphorus removal efficiencies. Sedimentation with coagulation may remove 60 to 90% of the total suspended solids (TSS), 40 to 70% of the BOD, 30 to 60% of the chemical oxygen demand (COD), 70 to 90% of the phosphorus, and 80 to 90% of the bacteria loadings. In comparison, sedimentation without coagulation may remove only 40 to 70% of the TSS, 25 to 40% of the BOD, 5 to 10% of the phosphorus loadings, and 50 to 60% of the bacteria loading. Chapter 9 of this manual contains additional information on the selection and application of chemicals for phosphorus removal.

Advantages of coagulation include greater removal efficiencies, the ability to use higher overflow rates, and more consistent performance. Disadvantages of coagulation include an increased mass of primary sludge, production of solids that are often more difficult to thicken and dewater, and an increase in operational cost and operator attention. The designer of chemical coagulation facilities should consider the effect of enhanced primary sedimentation on downstream solids-processing facilities.

7.2.1.1 Chemical Coagulants
Chemical coagulants such as ferric chloride and alum (typically < 60 mg/L) provide cations that destabilize colloidal particles in wastewater while flocculent aids such as polymer (typically < 2 mg/L), recycled sludge, and microsand function to accelerate the growth of floc, enlarge the floc, improve floc shape, strengthen floc structure, and increase particle specific gravity. The use of chemicals allows a higher peak overflow rate during peak events while maintaining or increasing primary clarifier performance, thus minimizing the clarifier surface area that must be provided for peak flows.

Chemically enhanced primary treatment has evolved over time. Early applications typically consisted of simply adding ferric, alum, or lime to a conventionally designed primary settling tank. Only a few plants use lime as a coagulant for primary treatment since lime addition produces more primary sludge because of the chemical solids than do metals salts and lime is more difficult to store, handle, and feed. Coagulant selection for enhanced sedimentation should be based on performance, reliability, and cost. Performance evaluation should use jar
tests of the actual wastewater to determine dosages and effectiveness. Operating experience, cost, and other relevant information drawn from other plants should be considered during selection. Current practice uses smaller metal salt doses (20 to 40 mg/L) in combination with polymer addition (< 1mg/L) and includes the use of rapid mix and flocculation before the settling tank. Use of iron salts can decrease the efficiency of downstream disinfection with UV light.

7.2.1.2 Rapid Mix
During rapid mix, the first step of the coagulation process, chemical coagulants are mixed with the raw wastewater. The coagulants destabilize the colloidal particles by reducing the forces (zeta potential), keeping the particles apart, which allows their agglomeration. The destabilization process occurs within seconds of coagulant addition. At the point of chemical addition, intense mixing will ensure uniform dispersion of the coagulant throughout the raw wastewater. The intensity and duration of mixing must be controlled, however, to avoid overmixing or undermixing. Overmixing may reduce the removal efficiency by breaking up existing wastewater solids and newly formed floc. Undermixing inadequately disperses the chemical, increases chemical use, and reduces the removal efficiency.

The velocity gradient, G, is a measure of mixing intensity. Velocity gradients of 300 s^{-1} are typically sufficient for rapid mix, but some designers have recommended velocity gradients as high as 1,000 s^{-1}. Mechanical mixers, in-line blenders, pumps, baffled compartments, baffled pipes, or air mixers can accomplish rapid mix. The mixing intensity of mechanical mixers and in-line blenders is independent of flow rate, but these mixers cost considerably more than other types and might become clogged or entangled with debris. Air mixing eliminates the problem of debris and can offer advantages for primary sedimentation, especially if aerated channels or grit chambers already exist. Pumps, Parshall flumes, flow distribution structures, baffled compartments, or baffled pipes methods often used for upgrading existing facilities offer a lower-cost but less-efficient alternative to separate mixers for new construction. Methods listed above are less efficient than separate mixers because, unlike separate mixing, the mix intensity depends on the flow rate.

7.2.1.3 Flocculation
During the flocculation step of the coagulation process, destabilized particles grow and agglomerate to form large, settleable flocs. Through gentle prolonged mixing, chemical bridging and/or physical enmeshment of particles occurs. Flocculation is slower and more dependent on time and agitation than is the rapid-mix step. Typical detention times for flocculation range between 20 and 30 minutes. Aerated and mechanical grit chambers, flow distribution structures, and influent wells are areas that promote flocculation upstream of primary sedimentation. Advantages and disadvantages of different configurations resemble those for rapid-mix facilities.

Like rapid mix, the velocity gradient, G, achieved with each configuration should be checked. Velocity gradients should be maintained from 50 to 80 s^{-1}. Polymers are sometimes added during the flocculation step to promote floc formation. Polymers should enter as dilute solution to ensure thorough dispersion of polymers throughout the wastewater. Polymers may provide a good floc with only turbulence and detention in the sedimentation tank inlet distribution.

7.2.1.4 Coagulant Addition
Supplementing conventional primary sedimentation with chemical coagulation requires minimal additional construction. The optimal point for coagulant addition is as far upstream as possible from primary sedimentation tanks. The optimum feed point for coagulant addition often varies from plant to plant. If possible, several different feed points should be considered for additional flexibility. Dispersing the coagulant throughout the wastewater is essential to minimize coagulant dosage and concrete and metal corrosion associated with coagulant addition. Flow-metering devices should be installed on chemical feed lines for dosage control.
7.2.2 Plate and Tube Settlers
Plate and tube settlers are utilized to increase the effective settling area within the clarifier or settling basin. They can be used with or without chemical enhancement but typically are utilized in advanced primary applications. These types of settlers operate on the principle that by increasing the area where particles can settle within the settling unit through the use of inclined tubes or plates will result in reduced footprint units accomplishing equivalent overflow rates to conventional settling basins with a much greater water surface area.

7.2.2.1 Calculation of Settling Area
The settling area within a plate clarifier is equal to the horizontally projected area of the vertically inclined plates, therefore, a settling basin equipped with \(n \) plates of overall surface area \(A \) inclined at an angle \(\Theta \) from the horizontal will have an equivalent settling area which can be calculated utilizing the equation:

\[
\text{Total Settling Area} = nA(\cos\Theta)
\]

Overflow rates can then be calculated utilizing the total settling area rather than the water surface area of the unit. Similar principles can be utilized for the calculation of total surface area and surface overflow rates for tube settlers.

7.2.2.2 Configuration
Typical settling plates are 0.2 m – 0.6 m wide and 3 m long with 50 mm spacing between multiple plates. Plate settlers are designed to operate in the laminar flow regime. Plate spacing must be large enough to prevent scouring of settled solids by the upward flowing liquid, to transport solids in a downward direction to the sludge hoppers, and to avoid plugging between the plates. In some instances, plate vibrators or mechanical scrapers can be utilized to prevent plugging. Flash mixers and flocculation chambers may be required ahead of the plate clarifier (as with all clarifiers) to mix in chemicals to promote floc growth and enhance the clarification process. Care must be taken to transport flocculated feed to the settling unit at less than 0.3 m/s to prevent floc breakup.

7.2.3 Ballasted Floc Clarifiers
The ballasted flocculation and settling process is a precipitative process which utilizes micro-sand combined with polymer for improved floc attachment and thus improved settling. The process involves: 1) coagulation; 2) injection; 3) maturation; and 4) sedimentation. During the coagulation process, metal-salt coagulants (typically alum or ferric sulphate) are added and thoroughly mixed into solution. The water then enters the injection chamber where polymer addition is followed by micro-sand injection and subsequent flash mixing. The maturation process acts like a typical flocculation chamber, utilizing an optimum mixing energy for optimized floc agglomeration onto the micro-sand.

In the settling process, water enters the lower region of the basin and travels through lamella plates. Solids collection with tube settlers in the bottom of the settling chamber is followed by cyclonic separation of micro-sand and sludge.

The micro-sand exiting the hydrocyclone is then re-injected into the treatment process. The micro-sand used typically has a diameter of 50 to 100 microns. The typical detention times for coagulation, injection, and maturation are 1 to 2 minutes, 1 to 2 minutes, and 4 to 6 minutes, respectively. The detention time of the settling basin depends on the rise rate, which is typically between 50 to 100 m³/m²•d.
7.2.4 Dense-Sludge Process

The dense system is a proprietary process and differs from ballasted flocculation in that recycled chemically conditioned solids are used to form microfloc particles with the incoming wastewater entering an air-mixing zone where grit separation occurs and coagulant (usually ferric sulphate) is injected. After mixing, the wastewater flows into the first stage of a two-stage flocculation tank where polymer is added together with chemically conditioned recirculated solids. Recirculated solids accelerate the flocculation process and ensure the formation of dense, homogeneous floc particles. In the second stage of flocculation, grease and scum begin separating and are removed. Flow from the flocculation tank enters a pre-settling zone and then passes into a plate settler. Most of the suspended flocculated solids are separated directly in the pre-settling zone; the residual flocculated particles are removed in the settler. A portion of the settled solids in recirculated, and the remainder is sent to the solids processing and disposal system.

7.3 Dissolved Air Flotation

Dissolved air flotation (DAF) refers to the process of solids-liquids separation caused by the introduction of fine gas (usually air) bubbles to the liquid phase. The bubbles attach to the solids, and the resultant buoyancy of the combined solids-gas matrix causes the matrix to rise to the surface of the liquid where it is collected by a skimming mechanism.

Flotation can be employed in both liquid clarification and solids concentration applications. Flotator liquid effluent (known as subnatant) quality is the primary performance factor in clarification applications. These applications include flotation of refinery, meat-packing, meat-rendering, and other “oily” wastewaters. Float-solids concentrations are the main performance criteria in solids concentration flotation applications. Concentration applications include the flotation of waste solids from biological, mining, and metallurgical processes.

7.3.1 Process Design Considerations and Criteria

The feed solids to a DAF clarifier are typically mixed with a pressurized recycle flow before tank entry. The recycle flow is typically DAF tank effluent, although providing water from another source as a backup is often advisable if poor DAF performance causes an effluent high in SS. The recycle flow is pumped to an air saturation tank where compressed air enters and dissolves. As the pressurized recycle containing dissolved air is admitted back into the DAF tank (its surface is at atmospheric pressure), the pressure release from the recycle forms the air bubbles for flotation. A typical bubble-size distribution contains bubbles diameters ranging from 10 to 100 μm. Solids and air particles float and form a blanket on the DAF tank surface while the clarified effluent flows under the tank baffle and over the effluent weir. In general, the blanket on top of the DAF tank will be 150 to 300 mm thick.

Chemical conditioning with polymers is frequently used to enhance DAF performance. Polymer use significantly increases applicable solids-loading rates and solids capture but less effectively increases float-solids concentrations. If a polymer is used, it generally is introduced at the point where the recycle flow and the solids feed are mixed. Introducing the polymer solution into the recycle just as the bubbles are being formed are mixed with the solids produces the best results. Good mixing to ensure chemical dispersion while minimizing shearing forces will provide the best solids-air bubble aggregates.

Numerous factors affect DAF process performance, including:
- Type and characteristics of feed solids;
- Hydraulic loading rate;
- Solids-loading rate;
- Air-to-solids ratio;
• Chemical conditioning;
• Operating policy;
• Float-solids concentration; and
• Effluent clarity.

7.3.1.1 Types of Solids
A variety of solids can be effectively removed by flotation. Among these are conventional activated sludge, solids from extended aeration and aerobic digestion, pure-oxygen activated sludge, and dual biological (trickling filter plus activated-sludge) processes.

Effects of the DAF process factors listed in the previous section make it difficult to document the specific performance characteristics of each of these types of solids. In other words, the specific conditions at each plant (for example, types of process, SRT, and SVI in the aeration basin) dictate DAF performance to a greater extent than can be compensated for by flotation equipment adjustments such as air-to-solids ratio.

7.3.1.2 Hydraulic Loading Rate
Hydraulic loading rate refers to the sum of the feed and recycle flow rates divided by the net available flotation area. Dissolved air flotation clarifiers typically are designed for hydraulic loading rates of 60 to 120 m/d, assuming no use of conditioning chemicals. The additional turbulence in flotators when the hourly hydraulic loading rate exceeds 5 m/h may hinder the establishment of a stable float blanket and reduce the attainable float-solids turbulence forces the flow regime away from plug flow and more toward mixed flow. The addition of a polymer flotation aid generally is required to maintain satisfactory performance at hourly hydraulic loading rates greater than 5 m/h.

7.3.1.3 Solids-Loading Rate
The solids-loading rate of a DAF clarifier is generally denoted in terms of weight of solids per effective flotation area. With the addition of polymer, the solids-loading rate to a DAF thickener generally can be increased 50 to 100%, with up to a 0.5 to 1% increase in the thickened-solids concentration.

Operational difficulties may arise when the solids-loading rate exceeds approximately 10 kg/m2h. The difficulties generally are caused by coincidental operation of excessive hydraulic loading rates and by float-removal difficulties. Even in those instances when the hydraulic-loading rate can be maintained at less than 120 m/d, operation at solids-loading rates more than 10 kg/m2h can cause float-removal difficulties. The increased amount of float created at high solids-loading rates necessitates continuous skimming, often at high skimming speeds.

Increased skimming speed, however, can cause float blanket disturbance and increase the amount of solids in the subnatant to unacceptable levels. In these circumstances, the addition of polymer flotation aid to increase the rise rate of the solids and the rate of float-blanket consolidation can alleviate some of the operating difficulties. Although stressed conditions, such as mechanical breakdown, excessive solids wastage, or adverse solids characteristics, may make it necessary to periodically operate in this manner, the flotation system should not be designed on this basis.

7.3.1.4 Feed-Solids Concentration
Changes in feed-solids concentration indirectly affect flotation in connection with the resultant changes in operating conditions. If the fed flow rate, recycle flow, pressure, and skimmer operations remain constant, an increase in feed-solids concentration results in a decrease in the air-to-solids ratio. Changes in feed-solids concentration, also result in changes to the float-blanket inventory and depth. Adjustments to the float skimmer
speed may be required when operating strategy includes maintenance of a specific float-blanket depth or range of depths.

7.3.1.5 Air-to-Solids Ratio
The air-to-solids ratio is perhaps the single most important factor affecting DAF performance. It refers to the weight ratio of air available for flotation to the solids to be floated in the feed stream. Reported ratios range from 0.01:1 to 0.4:1; adequate flotation is achieved in most municipal wastewater clarification applications at ratios of 0.02:1 to 0.06:1. Pressurization system sizing depends on many variables, including design solids loading, pressurization system efficiency, system pressure, liquid temperature, and concentration of dissolved solids. Pressurization system efficiencies differ among manufacturers and system configurations and can range from as low as 50% to more than 90%. Detailed information is available regarding the design, specification, and testing of pressurization systems.

Because the float from a DAF clarifier contains a considerable amount of entrained air, this pumping application requires positive-displacement or centrifugal pumps that do not air bind, and special consideration of suction conditions. Initial density of the skimmed solids is approximately 700 kg/m3. After the solids are held for a few hours, the air escapes and the solids return to normal densities. Float-solids content increases with increasing air-to-solids ratios up to a point where further increases in air-to-solids ratios result in only a nominal or no increase in float solids. The typical air-to-solids ratio at which float solids are maximized varies from 2 to 4%.

7.3.1.6 Float-Blanket Depth
The float produced during the flotation process must be removed from the flotation tank. The float-removal system usually consists of a variable-speed float skimmer and a beach arrangement. The volume of float that must be removed during each skimmer pass depends on the solids-loading rate, the chemical dosage rate, and the consistency of the float material.

Float-removal system skimmers are designed and operated to maximize float drainage time by incrementally removing only the top (driest) portion of the float and preventing the float blanket from expanding to the point where float exits the system in the subnatant. The optimal float depth varies from installation to installation. A float depth of 0.8 to 1.5 cm is typically sufficient to maximize float-solids content.

7.3.1.7 Polymer Addition
Chemical conditioning can enhance the performance of a DAF unit. Conditioning agents can be used to improve clarification and/or increase the float-solids concentration attainable with the unit. The amount of conditioning agent required, the point of addition (in the feed stream or recycle stream), and the method for intermixing should be specifically determined for each installation. Bench-scale flotation tests or pilot-unit tests provide the most effective method of determining the optimal chemical conditioning scheme for a particular installation. Typical polymer doses range from 2 to 5 g dry polymer/kg dry feed solids.

The addition of polymer usually affects solids capture to a greater extent than float-solids content. The float-solids content generally is increased up to 0.5% by the addition of dry polymer at a dosage of 2 to 5 g/kg dry solids.

If the lower ranges of hydraulic and solids loadings are used, the addition of polymer flotation aid typically is unnecessary for well-designed and operated DAF clarifiers. Maintenance of proper design and operating conditions as described in the preceding sections results in stable operation and satisfactory performance in terms of solids capture and float-solids concentration.
Solids recovery without polymer addition generally will be much greater than 90% when the DAF unit is sized as previously discussed. High loadings or adverse solids conditions can reduce solids recovery to 75 to 90%. Polymer-aided recovery can exceed 95%.

Under normal operations, the solids recycled from the DAF unit will not be damaging to the treatment system but will have the effect of increasing the WAS to be processed. In cases where the solids or hydraulic loading already are excessive, the recycled solids pose an additional burden on the system. Polymers should be employed under these conditions to maximize solids capture from the DAF unit.

7.4 Protective and Service Facilities

7.4.1 Operator Protection

All clarification tankage shall be equipped to enhance safety for operators. Such features shall appropriately include machinery covers, life lines, stairways, walkways, handrails and slip-resistant surfaces.

7.4.2 Mechanical Maintenance Access

The design shall provide for convenient and safe access to routine maintenance items such as gear boxes, scum removal mechanisms, baffles, weirs, inlet stilling baffle area and effluent channels.

7.4.3 Electrical Fixtures and Controls

Electrical fixtures and controls in enclosed settling basins shall comply with the Canadian Electrical Code and the applicable Provincial Power Standards. The fixtures and controls shall be located so as to provide convenient and safe access for operation and maintenance. Adequate area lighting shall be provided.

1 WEF, “Manual of Practice FD – 8, Clarifier Design”, 2005
Chapter 8 Biological Treatment ... 138
8.1 Activated Sludge .. 138
 8.1.1 General .. 138
 8.1.1.1 Applicability ... 138
 8.1.1.2 Specific Process Selection ... 138
 8.1.1.3 Aeration Equipment Selection .. 138
 8.1.1.4 Energy Requirements ... 138
 8.1.1.5 Winter Protection and Climate Change Considerations 138
 8.1.1.6 Pre-treatment ... 139
 8.1.1.7 Waste Activated Sludge Concentration 139
 8.1.2 Process Definitions .. 139
 8.1.2.1 Conventional Plug Flow .. 139
 8.1.2.2 Complete Mix Activated Sludge ... 139
 8.1.2.3 Step Feed .. 139
 8.1.2.4 Contact Stabilization ... 139
 8.1.2.5 Extended Aeration .. 140
 8.1.2.6 Oxidation Ditch .. 140
 8.1.2.7 High Rate Aeration ... 140
 8.1.2.8 High Purity Oxygen .. 140
 8.1.2.9 Countercurrent Aeration .. 140
 8.1.3 Return Sludge Equipment ... 141
 8.1.3.1 Return Activated Sludge Rate .. 141
 8.1.3.2 Return Sludge Pumps ... 141
 8.1.3.3 Return Sludge Piping ... 141
 8.1.3.4 Waste Sludge Facilities .. 141
 8.1.3.5 Froth Control Units ... 141
 8.2 Sequencing Batch Reactor (SBR) ... 141
 8.2.1 Process Configurations ... 142
 8.2.2 Continuous Influent Systems ... 142
 8.2.3 Intermittent Influent Systems ... 142
 8.2.4 Sequencing Batch Reactor Equipment .. 143
 8.2.4.1 Process Control ... 143
 8.2.4.2 Reactors ... 144
 8.2.4.3 Decanters .. 144
8.2.4.4 Solids Wasting .. 144
8.2.4.5 Aeration/Mixing Systems ... 144

8.3 Activated Sludge Design Parameters .. 145

8.4 Aeration ... 146

8.4.1 Arrangement of Aeration Tanks ... 146

8.4.1.1 General Tank Configuration ... 146
8.4.1.1.1 Inlets and Outlets ... 146
8.4.1.1.2 Measuring Devices ... 147
8.4.1.1.3 Freeboard ... 147

8.4.1.2 Aeration Equipment ... 147
8.4.1.2.1 General ... 147
8.4.1.2.2 Variable Oxygenation Capacity .. 147
8.4.1.2.3 Mixing Requirements ... 147
8.4.1.2.4 Back-up Requirements ... 148
8.4.1.2.5 Oxygen Transfer and Oxygen Transfer Efficiency .. 148
8.4.1.2.6 Characteristics of Aeration Equipment .. 150
8.4.1.2.7 Diffused Air Systems .. 150
8.4.1.2.8 Mechanical Aeration Systems .. 152

8.5 Rotating Biological Contactors .. 152

8.5.1 General ... 152
8.5.1.1 Applicability .. 152
8.5.1.2 Winter Protection (Enclosures) .. 153
8.5.1.3 Required Pre-treatment ... 153
8.5.1.4 Flow Equalization ... 153
8.5.1.5 Operating Temperature ... 154
8.5.1.6 Design Flexibility ... 154
8.5.1.7 Hydrogen Sulphide ... 154

8.5.2 Unit Sizing ... 154
8.5.2.1 Unit Sizing Considerations .. 154
8.5.2.2 Hydraulic Loading ... 154
8.5.2.3 Organic Loading .. 155
8.5.2.4 Tank Volume ... 155
8.5.2.5 Detention Time ... 155
8.5.2.6 Media Submergence and Clearance ... 155
8.5.3 Design Considerations

8.5.3.1 Unit Staging ... 155
8.5.3.2 Tankage ... 156
8.5.3.3 RBC Media .. 156
8.5.3.4 High Density Media ... 157
8.5.3.5 Shaft Rotational Speed .. 157
8.5.3.6 Biomass Removal ... 157
8.5.3.7 Dissolved Oxygen Monitoring 157
8.5.3.8 Supplemental Air .. 157
8.5.3.9 Side Stream Inflows .. 157
8.5.3.10 Recirculation .. 157
8.5.3.11 Load Cells .. 158
8.5.3.12 Loss of Rotation .. 158
8.5.3.13 Shaft Access ... 158
8.5.3.14 Structural Design .. 159
8.5.3.15 Geared Motors .. 159
8.5.3.16 Energy Requirements 159
8.5.3.17 Nitrification Consideration 159
8.5.3.18 Maintenance ... 160

8.6 Waste Stabilization Ponds

8.6.1 Supplement to Pre-Design Report 160
8.6.1.1 General ... 160
8.6.1.2 Location in Relation to Nearby Facilities 160
8.6.1.3 Land Use Zoning .. 160
8.6.1.4 Soil Borings ... 160
8.6.1.5 Percollation Rates .. 160
8.6.1.6 Site Description ... 160
8.6.1.7 Location of Field Tile ... 160
8.6.1.8 Sulphate Content of Water Supply 160
8.6.1.9 Well Survey .. 161
8.6.2 Location ... 161
8.6.2.1 Distance From Habitation 161
8.6.2.2 Prevailing Winds ... 161
8.6.2.3 Surface Runoff .. 161
8.6.2.4 Groundwater Pollution
8.6.2.5 Protection of Surface Water Supplies
8.6.2.6 Geology
8.6.2.7 Floodplains

8.6.3 Definitions

8.6.3.1 Aerobic Stabilization Basin
8.6.3.2 Facultative Stabilization Basins
8.6.3.3 Aerated Stabilization Basins
8.6.3.4 Anaerobic Stabilization Basins

8.6.4 Application, Advantages and Disadvantages of Different Stabilization Basin Types

8.6.5 Basis of Design

8.6.5.1 Waste Stabilization Basins
8.6.5.1.1 Holding Capacity Requirements
8.6.5.1.2 Area and Loadings
8.6.5.1.3 Flow Distribution
8.6.5.1.4 Controlled -Discharge Stabilization Ponds
8.6.5.1.5 Flow-Through Pond Systems
8.6.5.1.6 Tertiary Pond

8.6.5.2 Aerated Stabilization Basins
8.6.5.2.1 General
8.6.5.2.2 Design Approach
8.6.5.2.3 CBOD Removal and Effluent Characteristic
8.6.5.2.4 Temperature Effects
8.6.5.2.5 Oxygen Requirement
8.6.5.2.6 Mixing Requirements
8.6.5.2.7 Solids Separation

8.6.5.3 Industrial Wastes

8.6.5.4 Multiple Units

8.6.5.5 Design Depth

8.6.5.6 Pond Shape

8.6.6 Pond Construction Details

8.6.6.1 Embankments and Dykes
8.6.6.1.1 Materials
8.6.6 Top Width .. 168
8.6.6.1 Maximum Slopes ... 168
8.6.6.2 Minimum Slopes .. 168
8.6.6.3 Freeboard ... 168
8.6.6.4 Erosion Control ... 168
8.6.6.5 Vegetation Control ... 169
8.6.6.6 Pond Bottom .. 169
8.6.6.7 Vertical Separation ... 169
8.6.6.8 Uniformity .. 169
8.6.6.9 Vegetation ... 169
8.6.6.10 Permeability Tests ... 169
8.6.6.11 Interpretation of Hydraulic Conductivity Measurements 169
8.6.6.12 Soil ... 170
8.6.6.13 Liner .. 170
8.6.6.14 Seepage Control Criterion for Clay Liners ... 170
8.6.6.15 Seepage Control Criterion for Synthetic Liners .. 171
8.6.6.16 Site Drainage .. 171
8.6.7 Design and Construction Procedures for Clay Liners ... 171
8.6.7.1 Delineation of Borrow Deposit ... 171
8.6.7.2 Liner Thickness ... 171
8.6.7.3 Hydraulic Conductivity of Compacted Clay .. 171
8.6.7.4 Subgrade Preparation ... 172
8.6.7.5 Liner Material Placement and Compaction .. 172
8.6.7.6 Construction Control .. 172
8.6.7.7 Planning .. 173
8.6.8 Prefilling .. 173
8.6.9 Influent Lines .. 173
8.6.9.1 Material .. 173
8.6.9.2 Surcharging .. 173
8.6.9.3 Forcemains ... 173
8.6.9.4 Location ... 173
8.6.9.5 Point of Discharge ... 173
8.6.9.6 Influent Discharge Apron .. 174
Chapter 8 Biological Treatment

8.1 Activated Sludge

8.1.1 General

8.1.1.1 Applicability
The activated sludge process and its various modifications, may be used where sewage is amenable to biological treatment. This process requires close attention and competent operating supervision, including routine laboratory control. These requirements should be considered when proposing this type of treatment.

8.1.1.2 Specific Process Selection
The activated sludge process and its several modifications may be employed to accomplish varied degrees of removal of suspended solids and reduction of five day BODs. Choice of the process most applicable will be influenced by the proposed plant size, type of waste to be treated, degree and consistency of treatment required, anticipated degree of operation and maintenance, and operating and capital costs. All designs shall provide for flexibility in operation.

8.1.1.3 Aeration Equipment Selection
Evaluation of aeration equipment alternatives should include the following considerations:

The size of the aeration tank for any particular modification of the process shall be determined by full scale experience, pilot plant studies, or rational calculations based mainly on food to microorganism ratio or mixed liquor suspended solids levels. Other factors, such as size of treatment plant, diurnal load variations, and degree of treatment required, shall also be considered. In addition, temperature, pH, and reactor dissolved oxygen shall be considered when designing for nitrification.

- Costs - capital, maintenance and operating;
- Oxygen transfer efficiency;
- Mixing capabilities;
- Diffuser clogging problems;
- Air pre-treatment requirements;
- Total power requirements;
- Aerator tip speed of mechanical aerators used with activated sludge systems;
- Icing problems;
- Misting problems; and
- Cooling effects on aeration tank contents.

8.1.1.4 Energy Requirements
This process requires major energy usage to meet aeration demands. Energy costs in relation to critical water quality conditions must be carefully evaluated. Capability of energy usage phase-down while still maintaining process viability, both under normal and emergency energy availability conditions, must be included in the activated sludge design.

8.1.1.5 Winter Protection and Climate Change Considerations
Protection against freezing and extreme freezing events attributed to climate change shall be provided to ensure continuity of operation and performance.
8.1.1.6 Pre-treatment
Where primary settling tanks are not used, effective removal or exclusion of grit, debris, excessive oil or grease, and comminution or screening of solids shall be accomplished prior to the activated sludge process.

Where primary settling is used, provision shall be made for discharging raw sewage directly to the aeration tanks to facilitate plant start-up and operation during the initial stages of the plant's design life.

8.1.1.7 Waste Activated Sludge Concentration
In the absence of sludge thickeners, other effective means of waste sludge concentration shall be provided.

8.1.2 Process Definitions
The following are brief descriptions of a number of modified activated sludge process. See section 8.2 for the Sequencing Batch Reactor process description.

8.1.2.1 Conventional Plug Flow
The plug flow activated sludge process is a biological mechanism capable of removing 85 to 95% BOD from typical municipal wastewater. The flow pattern is plug-flow-type. The process is characterized by 20 to 45% sludge return. This is the original activated sludge process and was later modified to suit various applications, situations and treatment requirements. One characteristic of the plug flow configuration is a very high organic loading on the mixed liquor suspended solids (MLSS) in the initial part of the task. Plug flow configurations are often preferred when high effluent DO's are sought.

8.1.2.2 Complete Mix Activated Sludge
In a complete mix activated sludge process, the characteristics of the mixed liquor are similar throughout the aeration tank. That is, the influent waste is rapidly distributed throughout the tank and the operating characteristics measured in terms of solids, oxygen uptake rate (OUR), MLSS, and soluble BOD$_5$ concentration are identical throughout the tank. Because the entire tank contents are the same quality as the tank effluent, there is a very low level of food available at any time to a large mass of microorganisms. This is the major reason why the complete mix modification can handle surges in the organic loading without producing a change in effluent quality.

8.1.2.3 Step Feed
Step feed is a modification of the plug flow configuration in which the secondary influent is fed at two or more points along the length of the aeration tank. With this arrangement, oxygen uptake requirements are relatively even, resulting in better utilization of the oxygen supplied. Step feed configurations generally use diffused aeration equipment. Secondary influent flow is usually added in the first 50 to 75% of the aeration tank's length.

8.1.2.4 Contact Stabilization
Contact stabilization activated sludge is both a process and a specific tankage configuration. Contact stabilization encompasses a short-term contact tank, secondary clarifier, and a sludge stabilization tank with about six times the detention time used in the contact tank.

This unit operation was developed to take advantage of the fact that BOD removal occurs in two stages. The first is the absorptive phase and the second is the stabilization of the absorbed organics.

Contact stabilization is best for smaller flows in which the mean cell residence time (MCRT) desired is quite long, therefore, aerating return sludge can reduce tank requirements by as much as 30 to 40% versus that required in an extended aeration system.
8.1.2.5 Extended Aeration
The extended aeration process uses the same flow scheme as the complete mix or plug flow processes but retains the wastewater in the aeration tank for long periods of time. This process operates at a high MCRT (low F/M) resulting in a condition where there is not enough food in the system to support all the microorganisms present. The microorganisms therefore compete very actively for the remaining food and even use their own cell structure for food. This highly competitive situation results in a highly treated effluent with low sludge production. However, extended aeration plant effluents generally have significant concentrations of “pin floc” resulting in BOD$_5$ and SS removals of about 85%. Many extended aeration systems do not have primary clarifiers. Also, many are package plants used by small communities.

The main disadvantages of this system are the large oxygen requirements per unit of waste entering the plant and the large tank volume needed to hold the wastes for the extended period.

8.1.2.6 Oxidation Ditch
The oxidation ditch is a variation of the extended aeration process. The wastewater is forced around a circular or oval pathway by a mechanical aerator/pumping device at one or more points along the flow pathway. In the aeration tank, the mixed liquor velocity is maintained between 0.2 to 0.37 m/s in the channel to prevent solids from settling.

Oxidation ditches use mechanical brush disk aerators, surface aerators, or jet aerator devices to aerate and propel the liquid flow.

8.1.2.7 High Rate Aeration
This is a type of short-term aeration process in which relatively high concentrations of MLSS are maintained, by utilizing high sludge recirculation rates (100 to 500%), and low hydraulic retention times. Depending on the excess sludge wasting procedure, 60 to 90% BOD removal is achieved for normal domestic wastes. This process is usually (but not necessarily) accomplished in "combined-tank" units.

8.1.2.8 High Purity Oxygen
The most common high purity oxygen activated sludge process uses a covered and staged aeration tank configuration. The wastewater, return sludge, and oxygen feed gas enter the first stage of this system and flow concurrently through the tank. The tanks in this system are covered to retain the oxygen gas and permit a high degree of oxygen use. A prime advantage of the staged reactor configuration of the oxygenation system is the system’s ability to match approximately the biological uptake rate with the available oxygen gas purity.

8.1.2.9 Countercurrent Aeration
Countercurrent aeration is a unique aeration basin configuration which involves using a circular aeration basin with a centre-pivoted, traveling bridge supporting air diffusers. Rotating aerators continually re-suspend mixed liquor suspended solids while leaving a veil of fine bubbles providing the aeration. Another set of fixed bubble aerators can also be provided. Its rising bubbles are swept along with the rotating liquid current induced by traveling diffusers. The rotating velocity of the liquid causes bubbles from both sources to lead or trail away from their point of release. Clean water efficiencies are typically lower than those of fine-pore disc/dome grid systems and similar to tube-grid arrangements. Because additional energy is required to drive the bridge, it is likely that standard aeration efficiencies will be lower than those for more conventional activated sludge systems.
8.1.3 Return Sludge Equipment

8.1.3.1 Return Activated Sludge Rate
The minimum permissible return sludge rate of withdrawal from the final settling tank is a function of the concentration of suspended solids in the mixed liquor entering it, the sludge volume index of these solids and the length of time these solids are retained in the settling tank. Since undue retention of solids in the final settling tank may be deleterious to both the aeration and sedimentation phases of the activated sludge process, the rate of Return Activated Sludge (RAS) expressed as a percentage of the average design flow of sewage should generally be variable between the limits set forth in the final column of Table 8.1.

The rate of sludge return shall be varied by means of variable speed motors, drives or timers (small plants) to pump sludge at the above rates.

8.1.3.2 Return Sludge Pumps
If motor driven return sludge pumps are used, the maximum return sludge capacity shall be obtained with the largest pump out of service. A positive head should be provided on pump suctions. Pumps should have at least 75 mm suction and discharge openings.

If air lifts are used for returning sludge from each settling tank hopper, no standby unit will be required, provided the design of the air lifts are such as to facilitate their rapid and easy cleaning and provided other suitable standby measures are provided. Air lifts should be at least 75 mm in diameter.

8.1.3.3 Return Sludge Piping
Suction and discharge piping should be at least 100 mm in diameter and should be designed to maintain a velocity of not less than 0.6 m/s and not more than 2 m/s, when return sludge facilities are operating at normal return sludge rates.

Suitable devices for observing, sampling and controlling return activated sludge flow from each settling tank shall be provided.

8.1.3.4 Waste Sludge Facilities
Waste sludge control facilities should be designed for the maximum sludge production of the process. Means for observing, measuring, sampling and controlling waste activated sludge flow shall be provided. Waste sludge may be discharged to the primary settling tank, concentration or thickening tank, sludge digestion tank, mechanical dewatering facilities or any practical combination of these units.

8.1.3.5 Froth Control Units
It is essential to include some means of controlling froth formation in all aeration tanks. A series of spray nozzles may be fixed on top of the aeration tank. Screened effluent or potable water may be sprayed through these nozzles (either continuously or on a time clock on-off cycle) to physically break up the foam. Provisions may be made to use antifoaming chemical agents in the inlet of the aeration tank or preferably into the spray water. **Note:** If potable water is used for forth control, the water supply shall be protected with the use of a cross connection prevention device applicable to the hazard.

8.2 Sequencing Batch Reactor (SBR)
The Sequencing Batch Reactor (SBR) is a fill-and-draw activated sludge treatment system. All SBR systems utilize five steps that occur sequentially within the same tank as follows: (1) fill, (2) react (aeration), (3) settle (clarification), (4) decant, and (5) idle. Process modifications can be made by varying the times associated with
each step in order to achieve specific treatment objectives. When designing or evaluating SBR systems, care must be taken with the processes that are unique to the SBR. These include:

- Fill Method
- Hydraulic Control Systems
- Aeration Control Systems
- Method of Decant
- Sizing of Disinfection Equipment for Decant Flows
- Sludge Wasting Methods

One of the main strengths of the SBR process is the process flexibility that can be achieved, therefore, the above processes can be performed using a variety of methods. Designers of SBR systems must be prepared to supply sufficient detailed information at the request of regulatory authority.

8.2.1 Process Configurations

One classification of SBR systems distinguishes those that operate with continuous feed and intermittent discharge (CFID) from those that operate with intermittent feed and intermittent discharge (IFID).

8.2.2 Continuous Influent Systems

Continuous feed intermittent discharge (CFID) reactors receive influent wastewater during all phases of the treatment cycle. When there is more than one reactor, as is typically the case for municipal systems, the influent flow is split equally to the various reactors on a continuous basis. For two-reactor systems, it is normal to have the reactor cycle operations displaced so that one SBR is aerating while the second SBR is in the settling and decant phases. This makes it possible to aerate both reactors with one blower continuously in operation and also spreads the decant periods so that there is no overlap. The dry weather flow cycle time for most CFID systems is generally 3 to 4 hours. Each cycle typically devotes 50% of the cycle time to aeration, 25% to settling, and 25% to decant. Stormwater flows are accommodated by reducing cycle time. Under extreme flow condition, the reactor may operate as a primary clarifier (no aeration phase) with the decanters set at top water level (TWL).

With a CFID system, TWL occurs at the start of the decant phase. Because CFID systems generally operate on the basis of pre-set time cycles, TWL varies for each cycle as a function of the influent flow for that particular cycle. The actual effluent flow rate during the discharge event depends on the number of reactors and the percentage of each cycle devoted to decant.

A key design consideration with CFID systems is to minimize short-circuiting between influent and effluent. Influent and effluent discharges are typically located at opposite ends of rectangular reactors, with length-to-width ratios of 2:1 to 4:1 being common. Installation of a pre-reaction chamber separated by a baffle wall from the main reaction chamber is also a standard feature of some systems.

8.2.3 Intermittent Influent Systems

Intermittent Feed Intermittent Discharge (IFID) types of systems are sometimes referred to as the conventional, or “true,” SBR systems. The one common characteristic of all IFID systems is that the influent flow to the reactor is discontinued for some portion of each cycle.

In IFID systems each reactor operates with five discrete phases during a cycle. During the period of reactor fill, any combination of aeration, mixing, and quiescent filling may be practiced. Mixing independent of aeration can be accomplished by using jet aeration pumps or separate mixers. Some systems distribute the influent over a portion of the reactor bottom so that it will contact settled solids during unaerated and unmixed fill. The end of the fill cycle is controlled either by time (that is, fill for a pre-set length of time), or by volume (that is, fill until
the water level rises a fixed amount), or by a combination of both (fill to a max level or until the max fill time has elapsed). Flow information from the WWTP influent flow measurement or from the rise rate in the reactor, determined by a series of floats, may be used to control the time allocated to aeration, mixing, or filling in accordance with previously programmed instructions.

At the end of the fill cycle, all influent flow to the first reactor is stopped, and flow is diverted to the second reactor. Continuous aeration occurs during the react phase for a predetermined time period (typically 1 to 3 hours). Again, the time devoted to reaction in any given cycle may automatically be changed as a function of influent flow rate. At the completion of the reaction phase, aeration and any supplemental mixing is stopped, and the mixed liquor is allowed to settle under quiescent conditions (typically 30 to 60 minutes). Next, clarified effluent is decanted until the bottom water level (BWL) is reached. The idle period represents that time period between the end of decant and the time when influent flow is again redirected to a given reactor. During high-flow periods, the time in idle will typically be minimal.

The actual flow rate during discharge has the potential to be several times higher than the influent flow rate. Discharge flow rates are critical design parameters for the downstream hydraulic capacity of sewers (in the case of industrial treatment facilities) or processes such as disinfection or filtration. Decant rates should not cause disturbance of the settled sludge in the SBR.

Another variation of the IFID approach dispenses with a dedicated reaction phase and initiates the settling cycle at the end of aerated fill. Yet another IFID approach allows influent to enter the reactor at all times except for the decant phase so that normal system operation consists of the following phases: (1) fill-aeration, (2) fill-settling, (3) no fill-decant, and (4) fill-idle; these systems also include an initial selector compartment that operates either at constant or variable volume and serves as a flow splitter in multiple-basin systems. Biomass is directed from the main aeration zone to the selector.

Sequencing batch reactor systems can also be designed for nitrification-denitrification and enhanced biological phosphorus removal. In these cases, the cycle times devoted to such processes as anaerobic fill, anoxic fill, mixed/unmixed fill, aerobic fill, and dedicated reaction depend on the treatment objectives. Mineral addition may also be practiced to achieve effluent objectives more stringent than typical secondary effluent requirements. Systems can also be configured to switch from IFID operation to CFID operation when necessary to accommodate stormwater flows or to allow a basin to be removed from service while still treating the entire WWTP flow in a remaining basin. The one common factor behind all SBRs is that aeration, settling, and decant occur within the same reactor.

8.2.4 Sequencing Batch Reactor Equipment

8.2.4.1 Process Control

The programmable logic controller (PLC) is the optimum tool for SBR control and all present-day vendors use this approach. Sequencing Batch Reactor (SBR) manufacturers supply both the PLC and required software. Typically, programs are developed and modified by the SBR vendor using a desk-top computer and software supplied by the PLC vendor. Vendor-developed programs are proprietary and may not be modified by the design engineer or the WWTP operator. Depending on the proprietary software design and type of system, the operator may independently select such variables as solids waste rates; storm cycle times; and aeration, mixing, settling and idle times. In addition, human-machine-interface (HMI) programs are available to present operating data and trends to the operator, to allow the operator to make adjustments in set points, to respond to alarm annunciation, and to generate reports. Through high-speed internet or telephone/modem access, the operator is able to monitor and adjust the plant operations remotely.
PLC hardware is of modular construction. Troubleshooting procedures are well defined, and replacement of a faulty module is not difficult. An internal battery (UPS) protects the software in the event of power failure. The software is backed up by a memory chip (EPROM) and can be easily reloaded if the battery fails. The PLC expertise required of the owner/operators is limited to maintenance and repair functions that are well within the capability of a competent electrician.

Unless influent and effluent flow equalization is provided, the aeration system should be designed to match the diurnal organic load variation.

8.2.4.2 Reactors
Reactor shapes include rectangular, oval, circular, sloped sidewall, and other unique approaches. Design TWLs and BWLs often allow decanting from 20 to 30% of the reactor contents per cycle.

8.2.4.3 Decanters
Some decanters are mechanically actuated surface skimmers that typically rest above the TWL. The decanter is attached to the discharge pipe by smaller pipes that both support and drain the decanter. The discharge pipe is coupled at each end through seals that allow it to rotate. A screw-type jack attached to a worm gear, sprocket, and chain to an electric motor rotates the decanter from above the TWL to BWL. The speed of rotation is adjustable.

Other decanters are floated on the reactor surface. These decanters may approximate a large-diameter plug valve, whereby the top portion acts as the valve seat (and provides flotation). The bottom is the plug that is connected to a hydraulic operator that moves it away from the seat to allow discharge, or back to the seat to stop discharge. Other floating decanters consist of a length of pipe suspended on floats, with the pipe having a number of orifices bored in the bottom. The number of orifices (and length of pipe) is flow dependent. Each orifice is blocked by a flapper or plugs to prevent solids entry during aeration. There are also decanter configurations that float an effluent discharge pump.

Decanters that draw the treated effluent from near the water surface throughout the decant phase are recommended, as these maximise the settling time.

Other decanters are typically fixed-position siphons located on the reactor wall. The bottom of the decanter (collection end of the siphon) is positioned at the BWL. Flow into the decanter is under a front lip (scum baffle), over an internal dam, and out through a valve. When the water level in the reactor falls below the front lip, air enters the decanter, breaking the siphon and stopping flow. The trapped air prevents mixed liquor from entering during the reaction and settling modes. At the end of settling, the trapped air is released through a solenoid valve and the siphon is started.

8.2.4.4 Solids Wasting
The wasting of both aerated mixed liquor suspended solids (MLSS) and settled MLSS is practiced. The wasting systems frequently consist of a submersible pump with a single point for withdrawal. Gravity flow waste systems are also used. Another approach uses influent distribution piping for multiple-point with withdrawal of the settled solids.

8.2.4.5 Aeration/Mixing Systems
A variety of aeration and mixing systems are in use with SBRs. These include jet aeration, fine- and course-bubble aeration, hypermixers, and turbine mechanical aeration. Some systems use a floating mixer to provide mixing independent of aeration. Other diffused aeration facilities do not have any mixing capability independent of aeration. Independent mixing is readily obtained with a jet aeration system.
Where applicable, blowers shall be provided in multiple units, so arranged and in such capacities as to meet the maximum air demand in the toxic portions of the fill/react and react phases of the cycle with the single largest unit out of service.

8.3 Activated Sludge Design Parameters

To maintain high levels of treatment performance with the activated sludge process under a wide range of operating conditions, special attention must be given to process control. The principal approaches to process control are:

- Maintaining a target Solids Retention Time (SRT);
- Maintaining a target DO level in the aeration tank, and
- Regulation the RAS flowrate.

Other approaches include control of the MLSS in the aeration basin by regulation of the waste activated sludge (WAS).

Typical design parameters for activated sludge process modifications are indicated in Table 8.1.

Table 8.1 Typical Design Parameters for Activated Sludge Process Modifications

<table>
<thead>
<tr>
<th>Process name</th>
<th>Type of Reactor</th>
<th>SRT (days)</th>
<th>F/M (kg BOD/kg MLVSS-d)</th>
<th>Volumetric Loading (kg BOD/m^3/day)</th>
<th>MLSS, mg/ℓ</th>
<th>Detention Time (hrs)</th>
<th>RAS % of influent</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Rate Aeration</td>
<td>Plug Flow</td>
<td>0.5 - 2</td>
<td>1.5 – 2.0</td>
<td>1.2 – 2.4</td>
<td>200 – 1000</td>
<td>1.5 – 3</td>
<td>100 – 150</td>
</tr>
<tr>
<td>Contact Stabilization</td>
<td>Plug Flow</td>
<td>5 -10</td>
<td>0.2 - 0.6</td>
<td>1.0 – 1.3</td>
<td>1000 – 3000</td>
<td>6000-10,000^d</td>
<td>0.5 – 1^c</td>
</tr>
<tr>
<td>High-Purity Oxygen</td>
<td>Plug Flow</td>
<td>1 – 4</td>
<td>0.5 – 1.0</td>
<td>1.3 – 3.2</td>
<td>2000 - 5000</td>
<td>1 - 3</td>
<td>25 – 50</td>
</tr>
<tr>
<td>Conventional Plug Flow</td>
<td>Plug Flow</td>
<td>3 - 15</td>
<td>0.2 – 0.4</td>
<td>0.3 – 0.7</td>
<td>1000 - 3000</td>
<td>4 – 8</td>
<td>25 – 75^e</td>
</tr>
<tr>
<td>Step Feed</td>
<td>Plug Flow</td>
<td>3 - 15</td>
<td>0.2 – 0.4</td>
<td>0.7 – 1.0</td>
<td>1500 – 4000</td>
<td>3 – 5</td>
<td>25 - 75</td>
</tr>
<tr>
<td>Complete Mix</td>
<td>CMAS</td>
<td>3 - 15</td>
<td>0.2 – 0.6</td>
<td>0.3 – 1.6</td>
<td>1500 – 4000</td>
<td>3 – 5</td>
<td>25 – 100^e</td>
</tr>
<tr>
<td>Extended Aeration</td>
<td>Plug Flow</td>
<td>20 – 40</td>
<td>0.04 – 0.1</td>
<td>0.1 – 0.3</td>
<td>2000 – 5000</td>
<td>20 – 30</td>
<td>50 - 150</td>
</tr>
<tr>
<td>Oxidation Ditch</td>
<td>Plug Flow</td>
<td>15 – 30</td>
<td>0.04 – 0.1</td>
<td>0.1 – 0.3</td>
<td>3000 – 5000</td>
<td>15 - 30</td>
<td>75 – 150</td>
</tr>
<tr>
<td>Sequencing Batch Reactor, SBR</td>
<td>Batch</td>
<td>10 – 30</td>
<td>0.04 – 0.1</td>
<td>0.1 – 0.3</td>
<td>2000 – 5000</td>
<td>15 – 40</td>
<td>NA</td>
</tr>
<tr>
<td>Counter-Current Aeration System</td>
<td>Plug Flow</td>
<td>10 - 30</td>
<td>0.04 – 0.1</td>
<td>0.1 – 0.3</td>
<td>2000 - 4000</td>
<td>15 - 40</td>
<td>25 – 75^e</td>
</tr>
</tbody>
</table>
• Based on average Flow
• MLSS and detention time in contact basin
• MLSS and detention time in stabilization pond
• For nitrification, rates may be increased by 25 to 50%
• Also used at intermediate SRTs

CMAS = Complete-Mix Activated Sludge
SRT = Solids Retention Time
MLSS = Mixed Liquor Suspended Solids
MLSS - Mixed Liquor Suspended Solids
RAS = Return Activated Sludge
F/M = Food-to-Microorganism Ratio
MLVSS = Mixed Liquor Volatile Suspended Solids
NA = Not Applicable

The size of the aeration tank for any particular adaptation of the process shall be determined by full scale experience, pilot plant studies, or rational calculations based mainly on food to microorganism ratio and mixed liquor suspended solids levels. Other factors, such as size of treatment plant, diurnal load variations, and degree of treatment required, shall also be considered. In addition, temperature, pH, and reactor dissolved oxygen shall be considered when designing for nitrification.

8.4 Aeration

8.4.1 Arrangement of Aeration Tanks

8.4.1.1 General Tank Configuration

Dimensions
The dimensions of each independent mixed liquor aeration tank or return sludge re-aeration tank shall be such as to maintain effective mixing and utilization of air.

Aeration basin depth is an important consideration in the design of aeration systems because of the effect that depth has on the aeration efficiency and air pressure requirements of diffused aeration devices and mixing capabilities of mechanical aerators. A minimum aeration basin depth of 3.0 to 4.6 m is recommended for typical sewage treatment plants. Oxidation ditches should have minimum depth of 1.6 m.

Short-circuiting
For very small tanks or tanks with special configuration, the shape of the tank, the location of the influent and sludge return and the installation of aeration equipment should provide for positive control of short-circuiting through the tank.

Number of Units
Total aeration tank volume shall be divided among two or more units, capable of independent operation, when the total aeration tank volume required exceeds 140 m³.

8.4.1.1.1 Inlets and Outlets

Controls
Inlets and outlets for each aeration tank unit shall be suitably equipped with valves, gates, stop plates, weirs or other devices to permit controlling the flow to any unit and to maintain a reasonably constant liquid level. The hydraulic properties of the system shall permit the design peak instantaneous hydraulic load to be carried with
any single aeration tank unit out of service. The effluent weir for an oxidation ditch must be easily adjustable by mechanical means.

Conduits
Channels and pipes carrying liquids with solids in suspension shall be designed to maintain self-cleansing velocities or shall be agitated to keep such solids in suspension at all rates of flow within the design limits. Adequate provisions should be made to drain segments of channels which are not being used due to alternate flow patterns.

8.4.1.1.2 Measuring Devices
Devices should be installed for indicating flow rates of raw sewage or primary effluent, return sludge and air to each tank unit. For plants designed for sewage flows of 5000 m3/d or more, these devices should totalize and record, as well as indicate flows. Where the design provides for all return sludge to be mixed with the raw sewage (or primary effluent) at one location, then the mixed liquor flow rate to each aeration unit should be measured.

8.4.1.1.3 Freeboard
All aeration tanks should have a freeboard of not less than 450 mm. Additional freeboard or windbreak may be necessary to protect against freezing or windblown spray. If a mechanical surface aerator is used, the freeboard should not be less than 900 mm.

8.4.1.2 Aeration Equipment
8.4.1.2.1 General
Oxygen requirements generally depend on maximum BOD loading, degree of treatment and level of suspended solids concentration to be maintained in the aeration tank mixed liquor. Aeration equipment shall be capable of maintaining a minimum of 2.0 mg/L of dissolved oxygen (DO) in the mixed liquor at all times and providing thorough mixing of the mixed liquor. In the absence of experimentally determined values, the design oxygen requirements for all activated sludge processes shall be 1.1 kg O$_2$/kg peak BOD$_5$ applied to the aeration tanks with the exception of the extended aeration process, for which the value shall be 1.5 kg O$_2$/kg peak BOD$_5$. In the case of nitrification, the oxygen requirement for oxidizing ammonia must be added to the above requirement for carbonaceous BOD removal. The nitrogen oxygen demand (NOD) shall be taken as 4.6 times the diurnal peak TKN content of the influent. In addition, the oxygen demands due to recycle flows - heat treatment supernatant, vacuum filtrate, elutriates, etc. - must be considered due to the high concentrations of BOD and TKN associated with such flows.

Careful consideration should be given to maximizing oxygen utilization per unit power input. Unless flow equalization is provided, the aeration system should be designed to match diurnal organic load variation while economizing on power input.

8.4.1.2.2 Variable Oxygenation Capacity
Consideration should be given to reducing power requirements of aeration systems by varying oxygenation capacity to match oxygen demands within the system. Such a system would utilize automatic D.O. probes in each aeration basin to measure dissolved oxygen levels.

8.4.1.2.3 Mixing Requirements
The aeration system which is selected must not only satisfy the oxygen requirements of the mixed liquor, but must also provide sufficient mixing to ensure that the mixed liquor remains in suspension. The power levels
necessary to achieve uniform dissolved oxygen and mixed liquor suspended solids concentrations are shown in Table 8.2.

Table 8.2 Aeration Mixing Requirements

<table>
<thead>
<tr>
<th>Aeration System</th>
<th>For Uniform D.O. LEVELS</th>
<th>For Uniform MLSS LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td>1.6 TO 2.5 W/ m³</td>
<td>16 TO 25 W/ m³</td>
</tr>
<tr>
<td>Diffused (Coarse Bubble, Spiral Roll)</td>
<td>---</td>
<td>0.33 L/ m³/s</td>
</tr>
<tr>
<td>Diffused (Fine Bubble Domes, Full Floor Coverage)</td>
<td>---</td>
<td>0.6 L/ m²/s</td>
</tr>
</tbody>
</table>

Notes:
- Mixing requirements vary with basin geometry, MLSS concentrations, placement of aeration devices, pumping efficiency of aerators, etc. Wherever possible, refer to full-scale testing results for the particular aerator being considered.
- ℓL/m³/s refers to volume of air per second per volume of aeration tank.
- ℓL/m²/s refers to volume of air per second per horizontal cross-sectional area of aeration tank.

8.4.1.2.4 Back-up Requirements

Aeration systems will require facilities to permit continuous operation, or minimal disruption, in the event of equipment failure. The following factors should be considered when designing the back-up requirements for aeration systems:
- Effect on the aeration capacity if a piece of equipment breaks down, or requires maintenance (for instance, the breakdown of one of two blowers will have a greater effect on capacity than the breakdown of one of four mechanical aerators);
- Time required to perform the necessary repair and maintenance operations;
- The general availability of spare parts and the time required to obtain delivery and installation; and
- Means other than duplicate equipment to provide the necessary capacity in the event of a breakdown (for instance, using over-sized mechanical aerators with adjustable weirs to control power draw and oxygenation capacity, or using two speed mechanical aerators, etc.).

Generally considerations such as the above will mean that diffused aeration systems will require a standby blower but mechanical aeration systems may not require standby units, depending upon the number of duty units, availability of replacement parts, etc.

8.4.1.2.5 Oxygen Transfer and Oxygen Transfer Efficiency

Aeration equipment must be designed to carry out its functions under conditions much different than those under which it may be tested by the equipment supplier. The bulk of oxygen transfer tests are conducted under conditions commonly referred to as standard or are corrected to standard conditions.

The designer, therefore, must test the unit under standard conditions and project its efficiency to the mixed liquor, or conduct the test in the mixed liquor. In either case, there are intricacies (related to aerator testing) involved in making this conversion from one condition to another. It is good practice to work with the suppliers when selecting aerators to discuss and agree on, at the time of design, the planned test procedure and interpretation of results.
It is most common to express the oxygenation rate of a particular activated sludge aeration device either as standard oxygen rate (SOR) or actual oxygen rate (AOR), both in kg of oxygen transferred per hour (kgO₂/hr). Either value is considered to be determinable, given the other and its transfer environment. Methods used to calculate oxygen transfer for conditions other than standard, or to correct to standard conditions the results obtained by mixed liquor testing are as follows:

<table>
<thead>
<tr>
<th>Mechanical surface aerators: AOR = (\alpha (\text{SOR}) \left(\beta (C_{sw}-C_0)/C_s \right) \Theta^{(20)}) (1)</th>
<th>Diffused air and submerged turbine aerators: AOR = (\alpha (\text{SOR}) \left(\beta (C_{sc^*}-C_0)/C_s \right) \Theta^{(20)}) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha) = Relative rate of oxygen transfer as compared to clean water, dimensionless [equal to 1.0 under standard conditions. Mixed liquor range is 0.6 (near basin influent) to 0.94, with the higher value representative of well-treated wastes; values generally range from 0.8 to 0.94; initial stages of plug flow systems may have very low (\alpha); industrial wastes may reduce (\alpha);]</td>
<td></td>
</tr>
<tr>
<td>(\beta) = Relative oxygen saturation value as compared to clean water, dimensionless [equal to 1.0 under standard conditions. Mixed liquor range to 0.9 to 0.97, with upper level seen in well-treated wastes];</td>
<td></td>
</tr>
<tr>
<td>(\Theta) = Temperature correction constant, 1.024;</td>
<td></td>
</tr>
<tr>
<td>(C_s) = Oxygen saturation value of clean water at standard conditions, (C_s = 9.17) mg/L,</td>
<td></td>
</tr>
<tr>
<td>(C_{sw}) = Saturation value of clean water at the surface, at site conditions of temperature, (T), and actual barometric pressure, (P_a),</td>
<td></td>
</tr>
<tr>
<td>(C_{sc^*}) = Corrected (C_s) value for water depth, (D), and oxygen content of gaseous phase, mg/l,</td>
<td></td>
</tr>
<tr>
<td>(C_0) = Initial (or steady state) DO level mg/L [equal to 0.0 mg/L under standard conditions. Mixed liquor values range from 1.5 to 2.0 mg/L at average oxygen uptake conditions]; and</td>
<td></td>
</tr>
<tr>
<td>(T) = Temperature of bulk liquid, (^\circ \text{C}) [equal to 20(^\circ \text{C}) under standard conditions. Mixed liquor values range from 5(^\circ \text{C}) to 30(^\circ \text{C}); highest operating temperature is most conservative in terms of design ((C_s \text{ and } \Theta^{(20)} \text{ to self-correct})).]</td>
<td></td>
</tr>
</tbody>
</table>

In the absence of experimentally determined \(\alpha \) and \(\beta \) factors, wastewater transfer efficiency shall be assumed to be 50% of clean water efficiency for plants treating primarily (90% or greater) domestic sewage. Treatment plants where the waste contains higher percentages of industrial wastes shall use a correspondingly lower percentage of clean water efficiency and shall have calculations submitted to justify such a percentage.

Oxygen transfer efficiencies are generally represented in terms of kg of \(O_2 \) transferred per MJ. Manufacturers of aeration equipment will generally designate the specific equipment \(O_2 \) transfer rate as \(N_s \) (the standard transfer efficiency or rated capacity). The rated capacity can be expressed as:

\[
N_s = \frac{\text{SOR}}{\text{Total Power Consumed}} \tag{3}
\]

(by mixer/aerator, pump, blower)

The designer must therefore use equation (3) to determine the AOR as described in equation (1) or (2).
8.4.1.2.6 Characteristics of Aeration Equipment
Table 8.3 outlines various characteristics of some typical aeration equipment.

8.4.1.2.7 Diffused Air Systems
Typical air requirements for all activated sludge processes except extended aeration (assuming equipment capable of transmitting to the mixed liquor the amount of oxygen required in Section 8.4.1.2.1) is 100 m3 per kg of BOD$_5$ peak aeration tank loading. For the extended aeration process the value is 125 m3/kgBOD$_5$-peak.

Air requirements for diffused air systems should be augmented as required by consideration of the following items:

- To the air requirements calculated shall be added air required for channels, pumps, aerobic digesters or other air-use demand.
- The specified capacity of blowers or air compressors, particularly centrifugal blowers, should take into account that the air intake temperature may reach 40°C or higher and the pressure may be less than normal. The specified capacity of the motor drive should also take into account that the intake air may be -30°C or less and may require oversizing of the motor or a means of reducing the rate of air delivery to prevent overheating or damage to the motor.
- The blowers shall be provided in multiple units, so arranged and in such capacities as to meet the maximum air demand with the single largest unit out of service. The design shall also provide for varying the volume of air delivered in proportion to the load demand of the plant. Aeration equipment shall be easily adjustable in increments and shall maintain solids suspension within these limits.
- Diffuser systems shall be capable of providing for the diurnal peak oxygen demand or 200% of the design average day oxygen demand, whichever is larger. The air diffusion piping and diffuser system shall be capable of delivering normal air requirements with minimal friction losses.

1 WEF, “Manual of Practice 8 – Design of Municipal Wastewater Treatment Plants”
<table>
<thead>
<tr>
<th>Equipment Type</th>
<th>Equipment Characteristics</th>
<th>Process Where Used</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Reported Transfer Efficiency* (kg/MJ) for Std. Conditions, 0 D0, 20°C, 101 KPa, and clean water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffused Air: A bubbler porous diffusers</td>
<td>Produce fine-to-medium bubbles. Made of ceramic domes, plates, tubes, or plastic-cloth tube or bag.</td>
<td>High rate, conventional extended, step, modified, contact-stabilization activated sludge process</td>
<td>Good mixing; maintains liquid temperature. Varying air flow provides good operational flexibility.</td>
<td>High initial and maintenance costs; air filters needed; spiral configuration limits tank geometry.</td>
<td>0.31 – 0.42</td>
</tr>
<tr>
<td>Nonporous Diffusers</td>
<td>Made in bubble cap, nozzle, valve, orifice, or shear types. They produce coarse or large bubbles. Some made of plastic with check valve design.</td>
<td>Same as for porous diffusers</td>
<td>Non-clogging, maintains liquid temperature; low maintenance cost.</td>
<td>High initial cost; low oxygen transfer efficiency; high power cost. Fouling may occur.</td>
<td>0.2 – 0.31</td>
</tr>
<tr>
<td>B. Tubular</td>
<td>Produces high shear and entrainment as water-air mixture is forced through vertical cylinder containing static mixing elements. Cylinder construction is metal or plastic.</td>
<td>Primarily aerated lagoon applications</td>
<td>Economically attractive; low maintenance; high transfer efficiencies for diffused air systems. Well suited for aerated lagoon applications.</td>
<td>Ability to adequately mix reactor basin contents is questionable. Application for use in high rate biological systems unconfirmed.</td>
<td>0.31 – 0.44</td>
</tr>
<tr>
<td>C. Jet</td>
<td>Compressed air and pumped liquid are violently intermixed in nozzle and at discharge into vessel.</td>
<td>Same as for bubbler diffuser.</td>
<td>Suited for deep tanks; moderate cost.</td>
<td>Tank geometry limited. Clogging of nozzle requires blower and pump. Primary treatment required.</td>
<td>0.43 – 0.60</td>
</tr>
<tr>
<td>Mechanical Surface:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Axial Flow: 300-1200 RPM</td>
<td>Low output speed. Small diameter propeller. They are direct, motor driven units mounted on floating structures.</td>
<td>Aerated lagoons and reaeration.</td>
<td>Low initial cost; easy to adjust to varying water level flexible operation.</td>
<td>Some icing in cold climates. Initial cost higher than axial flow aerators. Gear reducer may cause maintenance problems.</td>
<td>0.34 – 0.43</td>
</tr>
<tr>
<td>B. Axial Flow: 300-1200 RPM</td>
<td>High output speed. Small diameter propeller. They are direct, motor driven units mounted on floating structures.</td>
<td>Aerated lagoons and reaeration.</td>
<td>Low initial cost; easy to adjust to varying water level flexible operation.</td>
<td>Some icing in cold climates. Initial cost higher than axial flow aerators. Gear reducer may cause maintenance problems.</td>
<td>0.34 – 0.43</td>
</tr>
<tr>
<td>C. Brush Rotor</td>
<td>Low output speed; used with gear reducer.</td>
<td>Oxidation ditch, applied either as an aerated lagoon or as an activated sludge.</td>
<td>Moderate initial cost. Good maintenance accessibility.</td>
<td>Subject to operational variables which may affect efficiency; tank geometry is limited.</td>
<td>0.43 – 0.60</td>
</tr>
<tr>
<td>Submerged Turbine</td>
<td>Units contain a low speed turbine and provide compressed air to diffuser rings or open pipe. Fixed-bridge application.</td>
<td>Same as for bubbler diffuser.</td>
<td>Good mixing; high capacity input per unit volume; deep tank application; operational flexibility. No icing or splash.</td>
<td>Require both gear reducer and blower; high total power requirements; high cost.</td>
<td>0.29 – 0.43</td>
</tr>
</tbody>
</table>

*Reported efficiency varies because of tank geometry, design, and other factors.
Air piping systems should be designed such that total head loss from the blower outlet (or silencer outlet where used) to the diffuser inlet does not exceed 3.4 kPa at average operating conditions.

The spacing of diffusers should be in accordance with the oxygen requirements through the length of the channel or tank and should be designed to facilitate adjustment of their spacing without major revision to air header piping. Fifty per cent blanks should be provided in at least the first half of the aeration system, for possible addition of more diffusers if found necessary.

All plants shall be designed to incorporate removable diffusers that can be serviced and/or replaced without dewatering the tank.

- Individual assembly units of diffusers shall be equipped with control valves, preferably with indicator markings for throttling, or for complete shutoff. Diffusers in any single assembly shall have substantially uniform pressure loss.
- Air filters shall be provided in numbers, arrangements and capacities to furnish at all times an air supply sufficiently free from dust to prevent damage to blowers and clogging of the diffuser system used. Blowers must have silencers, flexible connections and gauges.
- Blowers which require internal lubrication are not desirable because of the danger of diffuser clogging from oil being carried in the air stream. Water-piston-type compressors are not desirable because they increase the condensation in the air system, resulting in a more severe corrosion problem in the piping and greater pressure loss required to pass the condensate through the diffusers.

8.4.1.2.8 Mechanical Aeration Systems

Oxygen Transfer Performance
The mechanism and drive unit shall be designed for the expected conditions in the aeration tank in terms of the power performance. Certified testing shall verify mechanical aerator performance. In the absence of specific design information, the oxygen requirements shall be calculated using a transfer rate not to exceed 1.22 kg O_2/kW·h in clean water under standard conditions.

Design Requirements

- Maintain a minimum of 2.0 mg/l dissolved oxygen in the mixed liquor at all times throughout the tank or basin;
- Maintain all biological solids in suspension;
- Meet maximum oxygen demand and maintain process performance with the largest unit out of service; and
- Provide for varying the amount of oxygen transferred in proportion to the load demand on the plant.
- Provide that motors, gear housing, bearings, grease fittings, etc., be easily accessible and protected from inundation and spray as necessary for the proper functioning of the unit.
- Winter Protection

Due to high heat loss, the mechanism, as well as subsequent treatment units, shall be protected from freezing and other climate change impacts where extended cold weather conditions occur.

8.5 Rotating Biological Contactors
8.5.1 General

8.5.1.1 Applicability
The Rotating Biological Contactor (RBC) process may be used where sewage is amenable to biological treatment. The process may be used to accomplish carbonaceous and/or nitrogenous oxygen demand reductions.

Considerations for the rotating biological contactor (RBC) process should include:
• Raw sewage amenability to biological treatment,
• Pretreatment effectiveness including scum and grease removal,
• Expected organic loadings, including variations,
• Expected hydraulic loadings, including variations,
• Treatment requirements, including necessary reduction of carbonaceous and/or nitrogenous oxygen demand,
• Sewage characteristics, including pH, temperature, toxicity, nutrients,
• Maximum organic loading rate of active disc surface area,
• Minimum detention time at maximum design flow,
• Low whole life costs, and

The layout of any plant and ancillary equipment shall consider health and safety requirements, along with maintenance requirements. The overall design and layout of a facility shall minimise adverse environmental impacts. Such measures may include covering of structures where necessary, minimisation of odour release and noise, and boundary fencing.

Where more than one process unit is utilised, the ability to take streams out of service for maintenance and cleaning shall be provided. All process units, vessels and tanks should include the provision to allow for their emptying. During such planned maintain, the required final effluent discharge standard must continue to be met.

8.5.1.2 Winter Protection (Enclosures)
Wastewater temperature affects rotating contactor performance. Year-round operation requires that rotating contactors be covered to protect the biological growth from cold temperatures and the excessive loss of heat from the wastewater with the resulting loss of performance. Construction of enclosures should take climate change projections into consideration. Inclusion of insulated covers shall not make manual handling tasks impractical, where removal of covers is carried out for inspection services.

Enclosures shall be constructed of a suitable corrosion resistant material. Windows or simple louvered mechanisms which can be opened in the summer and closed in the winter shall be installed to provide adequate ventilation. To minimize condensation, the enclosure should be adequately insulated and/or heated. Mechanical ventilation should be supplied when the RBCs are contained within a building provided with interior access for personnel.

8.5.1.3 Required Pre-treatment
RBCs are dependent on the preceding treatment steps to effectively reduce the solids or CBOD level in high-strength influent streams that could otherwise result in interference or overload. Efficient grit removal and screening are therefore essential to prevent solids build-up under the filter media. Effective primary treatment processes must be provided to reduce the organic and hydrogen sulphide loading to the RBC unit, unless substantial justification is submitted for other pre-treatment devices which provide for effective removal or grit, debris and excessive oil or grease prior to the RBC units. Bar screening or comminution are not sole means of pre-treatment.

8.5.1.4 Flow Equalization
For economy of scale, the peaking factor of maximum flow to average daily flow should not exceed 3. Flow equalization should be considered in any instance where the peaking factor exceeds 2.5.
8.5.1.5 Operating Temperature
The temperature of wastewater entering any RBC should not drop below 13°C unless there is sufficient flexibility to decrease the hydraulic loading rate or the units have been increased in size to accommodate the lower temperature. Otherwise, insulation or additional heating must be provided to the plant.

8.5.1.6 Design Flexibility
Adequate flexibility in process operation should be provided by considering one or more of the following:
• Variable rotational speeds in first and second stages;
• Multiple treatment trains;
• Removable baffles between all stages;
• Positive influent flow control to each unit or flow train;
• Positively controlled alternate flow distribution systems;
• Positive airflow metering and control to each shaft when supplemental operation or air drive units are used;
• Recirculation of secondary clarifier effluent.

8.5.1.7 Hydrogen Sulphide
When higher than normal influent or sidestream hydrogen sulphide concentrations are anticipated, appropriate modifications in the design should be made.

8.5.2 Unit Sizing
The designer of an RBC system shall conform to the following design criteria, unless it can be shown by thorough documentation that other values or procedures are appropriate. This documentation may include detailed design calculations, pilot test results, and/or manufacturer's empirical design procedures. It should be noted that use of manufacturer's design procedures should be tempered with the realization that they are not always accurate and in some cases can substantially overestimate attainable removals.

8.5.2.1 Unit Sizing Considerations
Unit sizing shall be based on experience at similar full-scale installations or thoroughly documented pilot testing with the particular wastewater. In determining design loading rates, expressed in units of volume per day per unit area of media covered by biological growth, the following parameters must be considered:
• Design flow rate and influent waste strength;
• Percentage of BOD to be removed;
• Media arrangement, including number of stages and unit area in each stage;
• Rotational velocity of the media;
• Retention time within the tank containing the media;
• Wastewater temperature; and
• Percentage of influent BOD which is soluble.

In addition to the above parameters, loading rates for nitrification will depend upon influent Total Kjeldahl Nitrogen (TKN), pH and allowable effluent ammonia nitrogen concentration.

8.5.2.2 Hydraulic Loading
Hydraulic loading to the RBC's should range between 75 to 155L/m²d of media surface area without nitrification, and 30 to 80 L/m²d with nitrification.

The design flow to be handled by the RBC system shall be specified “Flow To Full Treatment” for the site and shall include an allowance for the return of any internally generated liquor.
8.5.2.3 Organic Loading
The RBC process is approximately first order with respect to BOD removal; i.e., for a given hydraulic loading (or retention time) a specific percent BOD reduction will occur, regardless of the influent BOD concentration, however, BOD concentration does have a moderate effect on the degree of treatment, and thus the possibility of organic overloading in the first stage. With this in mind, organic loading to the first stage of an RBC train should not exceed 0.03 to 0.04 kg BOD/m²d or 0.012 to 0.02 kg BOD soluble/m²d.

Loadings in the higher end of these ranges will increase the likelihood of developing problems such as heavier than normal biofilm thickness, depletion of dissolved oxygen, nuisance organisms, and deterioration of overall process performance. The structural capacity of the shaft; provisions for stripping biomass; consistently low influent levels of sulphur compounds to the RBC units; the media surface area required in the remaining stages; and the ability to vary the operational mode of the facility may justify choosing a loading in the high end of the range, but the operator must carefully monitor process operations.

Under normal operation carbonaceous substrate is mainly removed in the initial stage of the RBC. Therefore, the design organic loading rate applied to a RBC system particularly on the first stage must be within the oxygen transfer capability of the system to avoid overloading, odours, sloughing problems and the development of nuisance bacteria.

8.5.2.4 Tank Volume
For purposes of plant design, the optimum tank volume is measured as wastewater volume held within a tank containing a shaft of media per unit of growth covered surface on the shaft, or litres per square metre (L/m²). The optimum tank volume determined when treating domestic wastewater up to 300 mg/L BOD is 4.9 L/m², which takes into account wastewater displaced by the media and attached biomass. The use of tank volumes in excess of 4.9 L/m² does not yield corresponding increases in treatment capacity when treating wastewater in this concentration range.

8.5.2.5 Detention Time
Based on a tank volume of 4.9 L/m², the detention time in each RBC stage should range between 40 to 120 minutes without nitrification, and 90 to 250 minutes with nitrification.

8.5.2.6 Media Submergence and Clearance
RBC's should operate at a submergence of approximately 40 percent based on total media surface area. To avoid possible shaft overstressing and inadequate media wetting, the liquid operating level should never drop below 35 percent submergence. Media submergence of up to 95 percent may be allowed if supplemental air is provided. A clearance of 10 to 23 cm. between the tank floor and the bottom of the rotating media should be provided so as to maintain sufficient bottom velocities to prevent solids deposition in the tank.

8.5.3 Design Considerations
8.5.3.1 Unit Staging
The arrangement of media in a series of stages has been shown to significantly increase treatment efficiency. It is therefore recommended that an RBC plant be constructed in at least four stages for each flow path (or four zones of media area).

Four stages may be provided on a single unit by providing baffles within the tank. For small installations where the total area requirements dictate two units per flow path, two units may be placed in series with a single baffle in each tank, thus providing the minimum of four stages. For larger installations requiring four or more units per flow path, the units may be placed in a series within the flow path, with each unit itself serving as a
single stage. Generally, though, plants requiring more than four stages should be constructed in a series of parallel floor trains, each comprised of four separate stages.

Wastewater flow to RBC units may be either perpendicular or parallel to the media shafts.

8.5.3.2 Tankage

RBC units may be placed in either steel, FRP, or concrete tankage with baffles when required, and constructed of a variety of materials. The design of the tankage must include:

- Adequate structural support for the RBC and drive unit;
- Elimination of the "dead" areas;
- Satisfactory hydraulic transfer capacity between stages of units; and
- Considerations for operator safety.

The structure should be designed to withstand the increased loads which could result if the tank were to be suddenly dewatered with a full biological growth on the RBC units. The sudden loss of buoyancy resulting from unexpected tank dewatering could increase the bearing support loadings by as much as 40%.

Provisions for operator protection can be included in the tankage design by setting the top of the RBC tankage about one foot above the surrounding floor and walkways, with handrails placed along the top of the tankage, to provide an effective barrier between the operator and exposed moving equipment. The high tank walls will also prevent loss or damage by any material accidentally dropped in the vicinity of the units and entering the tankage.

8.5.3.3 RBC Media

The RBC media shall be manufactured from 100% virgin polypropylene copolymer (PP) or high-density polyethylene (HDPE) sheets and stabilised against ultraviolet decay. The media sheet material shall be selected to provide dimensional stability, high tear resistance and tensile strength at the operational temperature range during storage and operation.

Disc media may be supplied in different sheet configurations or corrugation patterns. Corrugations are preferred as this increases the available surface area and enhance their structural stability.

The media sheets may be cut into wedge shaped segments with up to eight segments forming a complete sheet to facilitate ease of maintenance. Alternative sheet arrangements must facilitate ease of maintenance without the requirement to remove the RBC shaft.

Waterways and airways within and between the media sheets must be maintained under all conditions and be of sufficient size to prevent bridging of the biomass and to allow oxygenation. The RBC media shall be arranged in such a manner that the resulting specific media substrate loading rate does not cause the biomass to block the media by bridging the gap between the media sheets.

The thickness and weight of biomass shall be based on the maximum design substrate-loading rate on the RBC media.

The media sheets shall be attached to the supporting framework through tubular structures. The media sheet shall be designed to support the static and dynamic loads resulting from the weight of the media sheet and attached biomass and shall take account of the rotation through water and air. Each media sheet shall be supported on the tubular structures such that the maximum stress and strain level on the media sheet material does not reduce the design life of the media sheet at the rotational speed of the RBC. The operating stress at the
maximum design load shall be below the endurance limit and creep strength of the media material. There shall be no relative movement between the media sheet and the tubular elements. The media shall be mounted onto the media support framework such as to ensure that:

- The media sheet(s) or wedge-shaped elements can be removed and re-installed without the need to remove other media sheet(s) or wedge-shaped elements in the adjoining bank of media.
- Adequate radial and annular drainage passages shall be maintained at all times to achieve effective drainage and aeration of the media. For avoidance of doubt the annular passage means the annular gap between and the shaft and the media packs shall be mounted such that there is a clear space between media packs and the shafts for all RBCs.
- All sloughed-off biomass becomes entrained in the bulk liquid and that the media arrangement enables total contact of the substrate with biomass film, free circulation of air through the media for biomass film oxygenation and escape of gases and other substances resulting from the biological activity in the biomass film to escape.
- The design life of media, media support framework and the RBC shaft shall not be compromised by inappropriate mounting and attachment of the media to the media support structure.

8.5.3.4 High Density Media
Except under special circumstances, high density media should not be used in the first stage. Its use in subsequent stages should be based on appropriate loading criteria, structural limitations of the shaft and media, and media configuration.

8.5.3.5 Shaft Rotational Speed
The shafts are rotated (1 to 2 revolutions per minute) by either mechanical or compressed air drive. Provision should also be made for rotational speed control and reversal.

8.5.3.6 Biomass Removal
A means for removing excess biofilm growth should be provided, such as air or water stripping, chemical additives, etc.

8.5.3.7 Dissolved Oxygen Monitoring
First-stage dissolved oxygen (DO) monitoring should be provided. The RBC should be able to maintain a positive DO level in all stages.

8.5.3.8 Supplemental Air
Periodic high organic loadings may require supplemental aeration in the first stage to promote sloughing of biomass.

8.5.3.9 Side Stream Inflows
The type and nature of side stream discharges to an RBC must be evaluated, and the resulting loads must be added to the total facility influent loads. Anaerobic digesters increase ammonia nitrogen loadings, and sludge conditioning processes such as heat treatment contribute increased organic and ammonia nitrogen loadings. Whenever septic tank discharges comprise part of the influent wastewater or any unit processes are employed that may produce sulphide ahead of the RBC units, the additional oxygen demand associated with sulphide must be considered in system design.

8.5.3.10 Recirculation
For small installations, such as those serving an industrial park or school, the inflow over weekends or at holiday periods may drop to zero. During such periods, the lack of incoming organic load will cause the media bio-
growth to enter the endogenous respiration phase where portions of the bio-growth become the food source or substrate for other portions of the bio-growth. If this condition lasts long enough, all of the bio-growth will eventually be destroyed. When this condition is allowed to exist, the RBC process does not have adequate bio-growth to provide the desired treatment when the inflow restarts.

If flow can be recycled through the sludge holding/treatment units and then to the RBC process, an organic load from the sludge units can be imposed on the RBC process. This imposed load will help to maintain the bio-growth and, as a secondary benefit, help stabilize and reduce the sludge.

When any new facility is first started, the bio-growth is slow to establish. If it is desired to build up the bio-growth before directing all of the inflow to the RBC process (as when the RBC is replacing an older existing process) some inflow may be directed to the RBC process and recycled.

In the first few days, minimal bio-growth will develop with only minimal removal of the organic load. By recycling, the unused organic load again becomes available to the bio-growth. As the bio-growth develops, the recycle rate should be reduced, with new inflow added to increase the organic load. As the bio-growth develops further, the recycle is eventually reduced to zero with all of the inflow being the normal RBC influent.

Where recirculation is provided:
- The recirculation system and its control shall be designed to reduce the risk of anaerobic conditions being established, which would impair the efficiency of the plant.
- Each RBC unit or all the RBC streams together shall contain a recirculation pumping system capable of providing a recirculation (by returning RBC outlet liquor back to the RBC inlet). Where a common recirculation pumping system is provided, then consideration shall be given to a flow through pumping station located downstream of the final effluent sample chamber.

8.5.3.11 Load Cells
Load cells, especially in the first stage(s), can provide useful operating and shaft load data. Where parallel trains are in operation, they can pinpoint overloaded or under loaded trains. Torque switch, Loss of Rotation (LOR) indicators and clamp-on ammeters are also potentially useful monitoring instruments.

Therefore, load cells shall be provided for all first and second stage shafts. Load cells for all other shafts in an installation are desirable.

8.5.3.12 Loss of Rotation
Each RBC shaft shall be fitted with a Loss of Rotation (LOR) warning device which must be configured with an operator adjustable (0 – 5 minutes) time delayed alarm to indicate a loss of shaft rotation under any circumstance, other than a failure in the power supply. The LOR alarm system must stop the RBC motor and generate an alarm signal at the Motor Control Centre.

8.5.3.13 Shaft Access
In all RBC designs, access to individual shafts for repair or possible removal must be considered. Bearings should also be accessible for easy removal and replacement if necessary. Where all units in a large installation are physically located very close together, it may be necessary to utilize large off-the-road cranes for shaft removal. Crane reach, crane size, and the impact of being able to drain RBC tankage and dry a unit prior to shaft removal should all be considered when designing the RBC layout.
8.5.3.14 Structural Design
The designer should require the manufacturer to provide adequate assurance that the shaft and media support structures are protected from structural failure for the design life of the facility. Structural designs should be based on appropriate American Welding Society (AWS) stress category curves modified as necessary to account for the expected corrosive environment. All fabrication during construction should conform to AWS welding and quality control standards.

Loads for which the shaft structure is designed shall be determined based on the biomass weight and weight of the structural steelwork as follows:

- Biomass thickness and the resulting weight shall be based on the maximum design substrate-loading rate applied to the RBC media.
- Dead weight of the RBC structure shall include static weight of the shaft tube, media support structure, media, and fixings.

8.5.3.15 Geared Motors
A high efficiency helical-helical or helical-bevel shaft mounted close coupled geared motor shall be supplied to drive each RBC. The gearbox shall be clamped to the stub shaft by a shrink disc coupling. The drive unit shall be attached to the support frame with a torque reaction arm. A minimum service factor of 2 shall be applied to the gearbox selection. This service factor shall be based on the estimated torque demand for continuous duty at the selected specific media substrate-loading rate (kg BOD/m2/d) and the potential out of balance load resulting from prolonged stoppage of the RBC due to mechanical or electrical failure or interruption in power supply.

The RBC drive system shall incorporate a soft start starter with an adjustable ramp up time set to enable the lowest part of RBC to go past the “top-dead centre” when the RBC is started. The RBC drive system shall be capable of re-starting the RBC after a power failure and stoppage of 8 hours without the need to rebalance the RBC for dynamic loads i.e. a pulsed restart system.

There shall be sufficient space around the gearbox and motor to enable operation and maintenance personnel to carry out their tasks safely.

8.5.3.16 Energy Requirements
Energy estimates used for planning and design should be based on expected operating conditions such as temperature, biofilm thickness, rotational speed, type of unit (either mechanical or air driven), and media surface area instead of normalized energy data sometimes supplied by equipment manufacturers. Care should be taken to assure that manufacturers’ data are current and reflect actual field-validated energy usage.

Only high efficiency motors and drive equipment should be specified. The designer should also carefully consider providing power factor correction for all RBC units.

8.5.3.17 Nitrification Consideration
Effluent concentrations of ammonia nitrogen from the RBC process designed for nitrification are affected by diurnal load variations. Therefore, it may be necessary to increase the design surface area proportional to the ammonia nitrogen diurnal peaking rates to meet effluent limitations. An alternative is to provide flow equalization sufficient to insure process performance within the required effluent limitations.

In addition to the above parameters, loading rates for nitrification, when required, shall depend upon influent total Kjeldahl nitrogen (TKN), pH, and allowable effluent ammonia nitrogen concentration.
8.5.3.18 Maintenance
All RBC equipment shall, at minimum, meet the following maintenance requirements:
• All regular maintenance should be achievable without requiring access below chamber covers.
• No elements that require greasing shall be below the water line.
• Minimum clearance should be provided such that parts can be removed in a safe and reliable way, without interference to operation.

8.6 Waste Stabilization Ponds
8.6.1 Supplement to Pre-Design Report

8.6.1.1 General
The Pre-Design report shall contain pertinent information on location, geology, soil conditions, area for expansion and any other factors that will affect the feasibility and acceptability of the proposed project.

The following information must be submitted in addition to that required in Chapter 1.

8.6.1.2 Location in Relation to Nearby Facilities
The location and direction of all residences, commercial developments, recreational areas and water supplies within two kilometres of the proposed pond shall be included in the Pre-Design report.

8.6.1.3 Land Use Zoning
Land use zoning adjacent to the proposed pond site shall be included.

8.6.1.4 Soil Borings
Data from soil borings, conducted by an independent soil testing laboratory to determine subsurface soil characteristics and groundwater characteristics (including elevation and flow) of the proposed site and their effect on the construction and operation of a pond, shall also be provided. At least one boring shall be a minimum of 7.5 m in depth or into bedrock, whichever is shallower. If bedrock is encountered, rock type, structure and corresponding geological formation data should be provided. The boring shall be filled and sealed. The permeability characteristics of the pond bottom and pond seal materials shall also be studied.

8.6.1.5 Percolation Rates
Data demonstrating anticipated percolation rates at the elevation of the proposed pond bottom shall be included. In-situ permeability testing should be done to measure the percolation rates.

8.6.1.6 Site Description
A description, including maps showing elevations and contours of the site and adjacent area suitable for expansion shall be identified. Due consideration shall be given to additional treatment units and/or increased waste loadings or determining load requirements.

8.6.1.7 Location of Field Tile
The location, depth, and discharge point of any field tile (subsurface drainage systems) in the immediate area of the proposed site shall be identified so that proper separation distances from proposed facilities can be maintained.

8.6.1.8 Sulphate Content of Water Supply
Sulphate content of the basic water supply shall be determined.
8.6.1.9 Well Survey
A pre-construction survey of all nearby wells (water level and water quality) is mandatory.

8.6.2 Location

8.6.2.1 Distance from Habitation
For separation distances, see Section 5.3.1.1.

8.6.2.2 Prevailing Winds
If practicable, ponds should be located so that local prevailing winds will be in the direction of uninhabited areas.

8.6.2.3 Surface Runoff
Location of ponds in watersheds receiving significant amounts of storm water runoff is discouraged. Adequate provision must be made to divert storm water runoff around the ponds and protect pond embankments from erosion and protect against other climate change impacts increasing the quantity of runoff.

8.6.2.4 Groundwater Pollution
Existing wells which serve as drinking water sources should be protected from health hazards or as required by the regulatory agency. Possible travel of pollutants through porous soils and fissured rocks should be objectively evaluated to safeguard the wells. A pond shall be located as far as practicable, with a minimum of 300 m from any well used as a drinking water source.

A minimum separation of 1.2 m between the bottom of the pond and the maximum groundwater elevation should be maintained; however, less separation may be acceptable when supported by appropriate hydrogeological and engineering designs/investigations upon acceptance of the regulatory authority having jurisdiction.

A minimum separation of 1.5 m between the bottom of the pond and bedrock is recommended; however, less separation may be acceptable when supported by appropriate hydrogeological and engineering designs/investigations upon acceptance of the regulatory authority having jurisdiction.

8.6.2.5 Protection of Surface Water Supplies
Stabilization basins shall be located downhill, downstream and remote from all sources of surface water supplies (lakes and rivers). The following minimum distances shall be employed as the criteria, but should consider future water level projections:

<table>
<thead>
<tr>
<th>Minimum Distance from a Lake or River to the Centre of a Dyke of a Proposed Stabilization Basin</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 m</td>
<td>Lined stabilization basin, pervious soil</td>
</tr>
<tr>
<td>75 m</td>
<td>Lined stabilization basin, impervious soil</td>
</tr>
</tbody>
</table>

8.6.2.6 Geology
Ponds shall not be located in areas which may be subjected to karstification (i.e. sink holes or underground streams generally occurring in areas underlain by limestone or dolomite).
8.6.2.7 Floodplains
A pond shall not be located within the 100-year floodplain, and design considerations should be made to minimize damages from the impacts of current storm surges and projected storm surges attributed to climate change in coastal areas.

8.6.3 Definitions

8.6.3.1 Aerobic Stabilization Basin
Aerobic lagoons are shallow basins which use natural processes involving both algae and bacteria. Aerobic lagoons have a minimum depth of 1 m. Oxygen is provided by algae during photosynthesis and wind aided surface aeration. The physical dimensions, temperature, amount of sunlight, and amount of natural or artificial turbulence are used to maintain a desired dissolved oxygen concentration. In practice it is not possible to maintain a completely aerobic lagoon. The bottom sediments will contain some facultative bacteria.

8.6.3.2 Facultative Stabilization Basins
Facultative lagoons are the most common type and are also referred to as oxidation lagoons. These lagoons are typically 1.5 m deep, with detention times ranging from 25 to more than 180 days. Depths are kept at 1.5 m or more to avoid the growth of emergent plants. Surface layers of the lagoon are aerobic with an anaerobic layer near the bottom. Oxygen is supplied by surface aeration and photosynthetic algae. Facultative lagoons are designed in series with a minimum of three cells to reduce short circuiting. The primary problem with facultative lagoons is the production of algae that remains in the effluent, which sometimes causes effluent suspended solids to exceed discharge requirements.

8.6.3.3 Aerated Stabilization Basins
Aerated lagoons can be either partially mixed or completely mixed. Oxygen is supplied by mechanical floating aerators or diffused aeration. Aerated lagoons have a minimum depth of 3 m, with detention times ranging from 5 to 30 days. Aerated lagoons accept higher biochemical oxygen demand (BOD) loadings than facultative lagoons, are less susceptible to odours, and typically require less land. Aerated lagoons are followed by a facultative lagoon or a settling lagoon (1-day detention or less) to reduce suspended solids before discharge.

8.6.3.4 Anaerobic Stabilization Basins
Anaerobic lagoons are heavily loaded with organics and do not have an aerobic zone. They have a minimum depth of 3 m and detention times of 20 to 50 days. Biological activity is typically low when compared to that of a mixed anaerobic digester. Anaerobic lagoons have been used as pre-treatment to facultative and aerobic lagoons for strong industrial wastewater and for rural communities with a significant organic load from industries such as food processing.

8.6.4 Application, Advantages and Disadvantages of Different Stabilization Basin Types
Table 8.4 presents advantages and disadvantages of the different pond and stabilization basin types for various applications.
Table 8.4 Application, Advantages and Disadvantages of the Different Stabilization Basin Types

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unaerated Aerobic</th>
<th>Facultative</th>
<th>Anaerobic</th>
<th>Aerated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Nutrient Removal; Treatment of Soluble Organic Wastes; Secondary Effluents</td>
<td>Treatment of Raw Domestic and Industrial Wastes</td>
<td>Pretreatment for Strong Industrial Wastewater and Areas with Large Organic Load</td>
<td>Treatment of Raw Domestic and Industrial Wastes</td>
</tr>
<tr>
<td>Advantages</td>
<td>Low Operating and Maintenance Costs</td>
<td>Low Operating and Maintenance Costs;</td>
<td>Small Volume and Area; Effective for High Strength Wastewater</td>
<td>Small Volume and Area; Resistance to Upsets</td>
</tr>
<tr>
<td>Disadvantages</td>
<td>Large Volume and Area; Possible Odours</td>
<td>Large Volume and Area; Possible Odours</td>
<td>Significant Maintenance; Gas Safety; Possible Odours</td>
<td>Significant Maintenance and Operating Costs; High Solids in Effluent; Foaming</td>
</tr>
</tbody>
</table>

8.6.5 Basis of Design

8.6.5.1 Waste Stabilization Basins

8.6.5.1.1 Holding Capacity Requirements

Before the design of a waste stabilization pond system can be initiated, the designer shall determine the following:

- Whether the stabilization basin can be continuously discharged or operate on a fill-and-draw basis (Intermittent Discharge);
- The period of the year if any, when discharge will not be permitted;
- What discharge rates will be permitted with fill-and-draw stabilization basin and what, if any, provision must be made for controlling effluent discharge rates in proportion to receiving stream flow rates;
- What the minimum time for discharge of stabilization basin cell contents should be for fill-and-draw systems.

The holding capacity of ponds shall be based upon average daily sewage flow rates, making a special allowance for net precipitation entering the cells.

8.6.5.1.2 Area and Loadings

One hectare of water surface should be provided for each 250-design population or population equivalent. In terms of BOD, a loading of 22 kg BOD₅/ha-day should not be exceeded. Higher or lower design loadings will be judged after review of material contained in the Pre-Design report and after a field investigation of the proposed site by the regulatory authority having jurisdiction.
Due consideration shall be given to possible future municipal expansion, climate change impacts, and/or additional sources of wastes when the original land acquisition is made. Suitable land should be available at the site for increasing the size of the original construction.

Where substantial ice cover may be expected for an extended period, it may be desirable to operate the facility to completely retain winter-time flows.

Design variables such as pond depth, multiple units, detention time and additional treatment units must be considered with respect to applicable standards for BOD$_5$, Total Suspended Solids (TSS), fecal coliforms, dissolved oxygen (DO) and pH.

8.6.5.1.3 Flow Distribution
The main inlet sewer or force main should terminate at a chamber which permits hydraulic and organic load splitting between the stabilization basin cells. The ability to introduce raw sewage to all cells is desirable but as a minimum, there must be a capability to divide raw sewage flows between enough cells to reduce the BOD$_5$ loading to 22 kg BOD$_5$/ha·day, or less. Complete isolation of each cell should be allowed for, for maintenance and inspection.

The inlet chamber should be provided with a lockable aluminum cover plate or grating, divided into small enough sections to permit easy handling.

8.6.5.1.4 Controlled -Discharge Stabilization Ponds
For controlled-discharge systems, the area specified as the primary ponds should be equally divided into two cells. The third or secondary cell volume should, as a minimum, be equal to the volume of each of the primary cells.

In addition, the design should permit for adequate elevation difference between primary and secondary ponds to permit gravity filling of the secondary from the primary. Where this is not feasible, pumping facilities may be provided.

8.6.5.1.5 Flow-Through Pond Systems
At a minimum, primary cells shall provide adequate detention time to maximize BOD removal. Secondary cells should then be provided for additional detention time with depths to two metres to facilitate both solids and pathogen reduction.

8.6.5.1.6 Tertiary Pond
When ponds are used to provide additional treatment for effluents from existing or new secondary sewage treatment works, the reviewing authority will, upon request, establish BOD loadings for the pond after due consideration of the efficiencies of the preceding treatment units.

8.6.5.2 Aerated Stabilization Basins
8.6.5.2.1 General
Aerated ponds can be either aerobic or facultative. An aerated aerobic pond contains dissolved oxygen through the whole system with no anaerobic zones. The pond shape and the aerating power provides complete mixing. The aerated facultative pond provides a partially mixed condition which will cause an anaerobic zone to develop at the bottom as suspended solids settle due to low velocity in the system.
Aerated Aerobic Stabilization Basins
In general, an aerated pond can be classified as an aerobic pond (complete mixed) if the mechanical aeration power level is above six watts per cubic metres of maximum storage.

Aerated aerobic ponds should be designed to maintain complete mixing with bottom velocities of at least 0.15 m/s. It is important that sufficient mixing power be provided.

Quiescent settling areas adjacent to the aerated cell outlets or the addition of suspended solids removal processes such as a clarifier must follow aerated aerobic treatment, to insure compliance with suspended solids discharge requirements. In most cases, a minimum detention time of one day is required to achieve solids separation. Algae growth should be limited by controlling the hydraulic detention time to two days or less. Water depth of not less than one metre shall be maintained to control odours arising from anaerobic decomposition. Adequate provision must be made for sludge storage so that the accumulated solids will not reduce the actual detention time.

Aerated Facultative Stabilization Basins
Aerated facultative ponds should be designed to maintain a minimum of 2 mg/l of dissolved oxygen (DO) in the upper zone of the liquid.

The aeration system must be able to transfer up to 1.0 kgO$_2$/kgBOD$_5$ applied uniformly throughout the pond when the water temperature is 20 ºC. The organic loading rate should be maintained between 0.031 and 0.048 kg/m3·day.

The escape of algae into the effluent should be controlled by providing a quiescent area adjacent to each cell outlet with an overflow rate of 32 m3/m2·d. If multiple aerated facultative cells are used, all cells following the first one shall have diminished aeration capacity to permit additional settling.

Whenever possible, provisions should be provided for recirculating part (5-10%) of the final aeration cell effluent back into the influent in order to maintain a satisfactory mix of active micro-organisms.

8.6.5.2.2 Design Approach
In general, the following factors should be considered in the design of the aerated lagoons:

- BOD removal and effluent characteristic;
- Temperature effects;
- Mixing requirements;
- Oxygen requirements; and
- Solids separation

8.6.5.2.3 CBOD Removal and Effluent Characteristic
BOD removal and the effluent characteristics are estimated using a complete mix hydraulic model and first order reaction kinetics. The complete mixed model using first order kinetics and operating in a series with 'n' equal volume cells is given by:

\[
\frac{L_e}{L_i} = \frac{1}{[1 + \frac{K_i T}{n}]^n}
\]
Where:

\[L_e = \text{Effluent BOD, mg/l} \]
\[L_i = \text{Influent BOD, mg/l} \]
\[K_t = \text{Reaction rate coefficient at } t^{\circ}\text{C, day}^{-1} \]
\[T = \text{Total hydraulic retention time in lagoon system, days} \]
\[n = \text{Number of ponds in series} \]

The selection of the reaction rate coefficient is critical in the design of the lagoon system. All other considerations in the design will be influenced by this selection. If possible, a design \(K_{20} \) should be determined for the wastewater in pilot or bench scale tests; experiences of others with similar wastewaters and environmental conditions should also be evaluated. Reaction rate coefficient \(K_{20} \) may vary from 0.276 day\(^{-1}\) for complete mix cell to 0.138 day\(^{-1}\) for aerated cell.

When using the complete mix model, the number of cells in series has a pronounced effect on the size of the aerated cell required to achieve a specific degree of treatment. The reactor required to achieve a given efficiency may be greatly reduced by increasing the number of cells in series.

8.6.5.2.4 Temperature Effects

The influence of temperature on the reaction rate is expressed by the equation:

\[K_t = K_{20} \theta^{t-20} \]

Where:

\[K_t = \text{Reaction rate coefficient at } t^{\circ}\text{C, day}^{-1} \]
\[K_{20} = \text{Reaction rate coefficient at } 20^{\circ}\text{C, day}^{-1} \]
\[t = \text{Wastewater temperature, } ^\circ\text{C} \]
\[\theta = \text{Temperature activity coefficient} \]

(varies from 1.04 to 1.1 for aerated lagoons, with typical value of 1.035)

8.6.5.2.5 Oxygen Requirement

Oxygen requirements generally will depend on the BOD loading, the degree of treatment and the concentration of suspended solids to be maintained. Aeration equipment shall be capable of maintaining a minimum dissolved oxygen level of 2 mg/l in the ponds at all times.

The oxygen requirements should meet or exceed the peak 24 hours summer loadings. A safety factor of up to two should be considered in designing oxygen supply equipment based on average BOD\(_5\) loadings. The amount of oxygen requirement has been found to vary from 0.7 to 1.5 times the amount of BOD\(_5\) removed. Suitable protection from weather and climate change impact shall be provided for electrical control.

8.6.5.2.6 Mixing Requirements

Aeration is used to mix the pond contents and to transfer oxygen to the liquid. There is no rational method available to predict the power input necessary to keep the solids suspended. The best approach is to consult equipment manufacturer’s charts and tables to determine the power input needed to satisfy mixing requirements. Power of 6-10W/m\(^3\) of the cell volume is frequently used and these values can be used as a guide to make preliminary estimates of power requirements, but the final sizing of aeration equipment should be based on guaranteed performance by an equipment manufacturer.
For a complete mix cell, in comparing the power requirements for both, to maintain solids in suspension and to meet the oxygen demand, it would soon become evident that the mixing requirements would control the power input to the system.

After determining the total power requirements for a cell, the diffusers/aeration units should be located in the cell so that there is an overlap of the diameter of influence providing complete mixing.

8.6.5.2.7 Solids Separation
For systems with continuous discharge to a receiving stream, a polishing cell having a minimum hydraulic retention of 5 days, based on summer average daily design flows, should be provided. Polishing cells are not required for systems having storage facilities with intermittent discharges.

8.6.5.3 Industrial Wastes
Due consideration shall be given to the type and effects of industrial wastes on the treatment process. In some cases, it may be necessary to pre-treat industrial or other discharges.

8.6.5.4 Multiple Units
At a minimum, a waste stabilization pond system shall consist of two cells designed to facilitate both series and parallel operations. The maximum size of a pond cell should be 5 hectares. A one cell system may be utilized in small installations. Larger cells may be permitted for bigger installations.

All systems should be designed with piping flexibility to permit isolation of any cell without affecting the transfer and discharge capabilities of the total system.

Requirements for multiple units in an aerated stabilization basin system shall be similar to those in an activated sludge system, including requirements for back-up aeration equipment.

8.6.5.5 Design Depth
The minimum operating depth should be sufficient to prevent growth of aquatic plants and damage to the dykes, control structures, aeration equipment and other appurtenances. See Section 7.6.3 for typical pond depths.

8.6.5.6 Pond Shape
Acute angles within any wastewater stabilization pond or aerated stabilization basin should be avoided. Square cells are preferred to long narrow rectangular cells. The long dimension of any pond should not align with the prevailing wind direction.

8.6.6 Pond Construction Details
8.6.6.1 Embankments and Dykes
8.6.6.1.1 Materials
Embankments and dykes shall be constructed of relatively impervious materials and compacted to at least 95 percent Standard Proctor Density to form a stable structure. Vegetation and other unsuitable materials should be removed from the area where the embankment is to be placed.

A soils consultant’s report shall be required for all earthen berm construction to demonstrate the suitability of the soils. In certain instances, a hydrogeologist’s report may be required to assess possible impact on the water table. All topsoil must be stripped from the area on which the berms are to be constructed.
8.6.6.1.2 Top Width
The minimum embankment top width should be 3 m to permit access of maintenance vehicles.

8.6.6.1.3 Maximum Slopes
Unless otherwise specified by a soil consultant's report, embankment slopes should not be steeper than:

Inner
Three horizontal to one vertical (3H:1V)

Outer
Three horizontal to one vertical (3H:1V).

8.6.6.1.4 Minimum Slopes
Embankment slopes should not be flatter than:

Inner
Four horizontal to one vertical. Flatter slopes are sometimes specified for larger installations because of wave action but have the disadvantage of added shallow areas conducive to emergent vegetation. Other methods of controlling wave action may be considered.

Outer
Outer slopes shall be sufficient to prevent surface water runoff from entering the ponds.

8.6.6.1.5 Freeboard
Minimum freeboard shall be 1m, or as required based on water level and runoff projections due to climate change impact.

8.6.6.2 Erosion Control

Outer Dykes
The outer dykes shall have a cover layer of at least 100 mm of fertile topsoil to promote establishment of an adequate vegetative cover wherever rip-rap is not utilized. Adequate vegetation shall be established on dykes from the outside toe to 0.5 m below the top of the embankment as measured on the slope. Perennial-type, low-growing, spreading grasses that minimize erosion and can be mowed are most satisfactory for seeding on dykes. Additional erosion control may also be necessary on the exterior dyke slope to protect the embankment from erosion due to current and projected severe flooding of a watercourse.

Inner Dykes
Alternate erosion control on the interior dyke slopes has become necessary for ponds because of problems associated with mowing equipment not designed to run on slopes as well as a lack of maintenance by the plant owner. The inner dykes shall have a cover of at least 200 mm of pit run gravel or other material graded in a manner to discourage the establishment of any vegetation. The material should be spread on dykes from the inside toe to the top of the embankment. Clean and sound rip-rap or an acceptable equal shall be placed from 0.3 m above the high-water mark to 0.6 m below the low water mark (measured on the vertical). Maximum size of rock used should not exceed 150 mm.

Top of Embankment
The top of the embankment used for access around the perimeter of the dykes shall have a cover layer of at least 300 mm similar to the one described in 8.6.6.2 Inner Dykes.
Additional Erosion Protection
Rip-rap or some other acceptable method of erosion control is required as a minimum around all piping entrances and exits. For aerated cells the design should ensure erosion protection on the slopes and bottoms in the areas where turbulence will occur.

Erosion Control During Construction
Effective site erosion control shall be provided during construction according to applicable provincial documents such as “Erosion and Sedimentation Control Handbooks for Construction Sites”, if available in the province of jurisdiction. An approved erosion control plan is required before construction begins.

8.6.6.3 Vegetation Control
A method shall be specified which will prevent vegetation growth over the surface of the inner slope and top of the embankment.

8.6.6.4 Pond Bottom
8.6.6.4.1 Vertical Separation
For separation distance between the cell bottom and bedrock, refer to Section 8.6.2.4. Cell bottoms should be located sufficiently high above the groundwater level, in order to prevent inflow and/or liner damage.

8.6.6.5 Uniformity
The pond bottom should be as level as possible at all points. Finished elevations should not be more than 75 mm from the average elevation of the bottom.

8.6.6.5.1 Vegetation
The bottom shall be cleared of vegetation and debris. Organic material thus removed shall not be used in the dyke core construction. However, suitable topsoil relatively free of debris may be used as cover material on the outer slopes of the embankment as described in 8.6.6.2 Outer Dykes.

8.6.6.5.2 Permeability Tests
Permeability tests shall be carried out on the soil material at each proposed stabilization basin site except in cases where the soil is unmistakably impervious. The permeability tests may take either of two forms:
- Laboratory tests on samples from below the proposed bottom of the stabilization basin and from the material to be used in the dykes.
- Field seepage tests. These may be conducted in the following way. A pit shall be dug to the level of the proposed stabilization basin bottom and the bottom of the dug hole carefully cleaned. At least one test shall be conducted for every two hectares of stabilization basin area. A pipe with an internal diameter of at least 0.2 m and length of at least 1.2 m shall be carefully placed in a vertical position resting on the bottom of the hole. The hole shall be backfilled around the outside of the pipe to a height of 1 m with carefully tamped soil. Particular care should be given to tamping the soil near the bottom. The pipe shall be filled with water to a depth of 1.2 m. The water must be placed in the pipe gently so as not to disturb the soil at the bottom. The drop-in water level from a head of 1.2 m shall be recorded for each of at least 3 24-hour periods, or until the readings become consistent. (Level shall be re-adjusted to 1.2 m at the beginning of each 24 hour period).

8.6.6.5.3 Interpretation of Hydraulic Conductivity Measurements
There can be major differences between laboratory and field hydraulic conductivity measurements. These differences are likely to occur because of complex geological and hydrogeological conditions, in-situ and errors
in measurement methods. The ratio of K (in-situ) to K (laboratory) may be in the range of 0.38 to 64. The major reasons for higher field values are: 1) laboratory tests are generally run on homogeneous, clayey samples; 2) sand seams, fissures and other macrostructures in the field are not present in laboratory samples; 3) measurement of vertical K in the laboratory and horizontal K in the field; and 4) changes in soil structure, chemical characteristics of the permeant, air entrapment in laboratory samples and other errors associated with laboratory tests.

The value of K from a field test as described above may be obtained from the following equation:

$$K = \left(\frac{A}{FDt}\right) \times [\ln(h_1/h_2)]$$

Where:

- A = Area of standpipe
- t = Time for head change from h_1 to h_2
- D = Diameter of hole
- h = Head water above water table
- F = 2.0 for a borehole with a flat bottom at an upper impervious boundary, or 2.75 for a cased borehole with a flat bottom in the middle of a deep soil layer.

* Olson and Daniel (1981)

Alternatively, if the laboratory tests show a permeability greater than 1×10^{-6} cm per second, or if the drop-in head of the field test exceeds 10 mm per 24 hours, then provision should be made to make the soil more impermeable, as indicated in Design Section 8.6.6.5.6.

8.6.6.5.4 Soil

Soil used in constructing the pond bottom (not including liner) and dyke cores shall be relatively incompressible and tight and compacted at or up to four percent above the optimum water content to at least 90 percent Standard Proctor Density. Soft pockets that would prevent sufficient compaction of the liner must be sub-excavated and replaced with suitable, compacted fill.

8.6.6.5.5 Liner

Stabilization Ponds shall be sealed such that seepage loss through the seal is as low as practicably possible. Liners consisting of soils or bentonite as well as synthetic liners may be considered, provided the permeability, durability and integrity of the proposed material can be satisfactorily demonstrated for anticipated conditions. Results of a testing program which substantiates the adequacy of the proposed liner must be incorporated into and/or accompany the Pre-Design report. Standard ASTM procedures or acceptable similar methods shall be used for all tests. Where clay liners are used, precautions should be taken to avoid erosion and desiccation cracking prior to placing the system in operation.

8.6.6.5.6 Seepage Control Criterion for Clay Liners

The seepage control criterion for municipal wastewater stabilization ponds and aerated stabilization basins utilizing clay liners specifies a maximum hydraulic conductivity, K, for the pond liner as a function of the liner thickness, L, and water depth, D, by the equation:

$$\text{Maximum } K \ (\text{m/s}) = 4.6 \times 10^{-8} \text{m/s} \times L \ (\text{m})$$
D (m) + L (m)

Where all units are in metres and seconds.

For example, a compacted clay liner that is 0.5 m thick must have a hydraulic conductivity of about 1.3×10^{-8} m/s (1.3 x 10^-6 cm/s) or less. The “K” obtained by the above expression corresponds to a percolation rate of pond water of less than 40 cubic metres per day per hectare at a water depth of 1.2 metres.

8.6.6.6 Seepage Control Criterion for Synthetic Liners
For synthetic liners, seepage loss through the liner shall not exceed the quantity equivalent through an adequate soil liner. For liner durability the minimum liner thickness for a HDPE liner shall be 1.5 mm (60 mil). The liner shall be underlain by a sand layer with a minimum thickness of 150 mm.

8.6.6.7 Site Drainage
Surface drainage must be routed around and away from cells. Field tiles within the area enclosed by the berms must be located and blocked so as to prevent cell content leakage. Measures must be taken, where necessary, to avoid disruption of field tile and surface drainage of adjacent lands, by constructing drainage works to carry water around the site.

8.6.7 Design and Construction Procedures for Clay Liners

8.6.7.1 Delineation of Borrow Deposit
The first step in designing a compacted clay liner is delineating a relatively uniform deposit of suitable borrow material, preferably from the pond cut or from a nearby borrow area. The required volume of clayey soil is equal to the surface area of the pond interior times the liner thickness (measured perpendicular to the bottom and side slope surfaces). A large reserve volume is recommended to ensure that there is indeed sufficient clay volume after removing silt and sand pockets and other unsuitable materials.

8.6.7.2 Liner Thickness
Recommended minimum compacted clay liner thicknesses are 0.5 m on the pond bottom and 0.7 m on the side slopes, to allow for weathering, variations in actual thickness, pockets of poor-quality material that escape detection, etc. If a clay core in the dyke is preferred over an upstream clay blanket liner, then the core should be well keyed into the bottom liner. A minimum core width of three metres is suggested to allow economic and proper placement and compaction of the clay using large earth-moving equipment.

8.6.7.3 Hydraulic Conductivity of Compacted Clay
The in situ hydraulic conductivity of the compacted clay liner should be predicted from laboratory tests on the proposed clay borrow material. Several samples should be selected representing the range of material within the designated borrow zone, not just the better material. Permeability tests should be performed on the samples compacted to the required density (i.e. 95% of standard Proctor maximum dry density) at a moisture content anticipated in the field. It is recommended that the sensitivity of the compacted clay hydraulic conductivity to variations in density and moisture content be determined. The designer must be prepared to ensure that the soil is brought to the specified moisture content (i.e. by wetting), unless the natural moisture content is already suitable.

A laboratory value for K should be calculated from the weighted average of the individual tests. The weighting of each test value should be according to the estimated percent of the borrow volume that the individual sample represents. It is recommended that the liner design be based on a K in situ that is one order of magnitude larger than the average K (lab), i.e.:
The increase in the K value is a factor of safety to allow for the effects of macro-structure, poor quality borrow, etc., in the field. The K (design) and liner thickness values should meet the seepage criteria outlined in Section 7.6.6.5.6. If K (design) is too high, the more selective borrowing or adjustment of compaction moisture content could be investigated. Otherwise, an alternative liner material will be required.

8.6.7.4 Subgrade Preparation
Clay should not be placed directly over gravel or other materials that do not provide an adequate filter to prevent piping erosion of the liner.

8.6.7.5 Liner Material Placement and Compaction
The clay should be placed in uniform, horizontal lifts of about 150 mm maximum loose thickness. The liner should be constructed in at least three lifts. Thin lifts ensure more uniform density, better bonding between lifts and reduces the likelihood of continuous seepage channels existing in the liner. Large lumps, cobbles and other undesirable materials are more easily identified in thin lifts. Lumps of soil greater than 100 mm in maximum dimension should be broken up prior to compaction. As far as practical, the liner should be built up in a uniform fashion over the pond area, in order to avoid sections of butted fill where seepage paths may develop.

Each lift should be compacted within the specified moisture content range to the required density using heavy, self-propelled sheepsfoot compactors. Lift surfaces that have been allowed to dry out should be scarified prior to placing of the next lift. Lift surfaces that have degraded due to precipitation etc., should either be removed or allowed to dry to the required moisture content and then be re-compactcd.

The completed liner should be smoothed out with a smooth-barrel compactor to reduce the liner surface area exposed to water absorption and swelling. The liner base should not be allowed to dry out or be exposed to freezing temperatures. Ideally, the liner should be flooded as soon as possible after construction and acceptance.

8.6.7.6 Construction Control
The most important form of quality control during construction of compacted clay liners will be observation and direction by the engineer. The characteristics of the desired liner material should be established in as much detail as possible (i.e. by colour, texture, moisture content, plasticity or characteristic features such as the mineralogy of pebbles in till). Quick visual or index test identification by experienced field personnel is probably the best way to detect poor quality material. An indirect but simple way of controlling liner quality is to perform frequent in situ density and moisture content tests. The density and moisture content may then be related to hydraulic conductivity by the relationships established during the laboratory test program (see Section 7.6.7.3). The frequency of tests should be increased when soil conditions are variable. The tests may be used to statistically evaluate the overall liner properties and to assess suspect zones in the liner.

In situ density and moisture content tests should be carried out on a routine basis for each lift. Tests should be conducted on a grid pattern (say 30 x 30 m to 60 x 60 m grids for large ponds and at closer spacing for small ponds) and in suspect areas.

The completed liner may be assessed by performing in situ infiltration tests, which may be theoretically related to hydraulic conductivity values (see Section 7.6.6.5.3). It should be noted that the compacted clay liner is most likely to be partially saturated at the end of construction. The presence of five to ten percent air voids will result in an unsaturated K value that is somewhat higher than the saturated K value.
The completed liner may also be cored and the hydraulic conductivity of a trimmed sample can be tested in a suitable permeameter, i.e., odometer falling head tests or triaxial constant head tests. All holes created in the liner due to tests, stakes or other circumstances should be backfilled with well-compacted liner material.

8.6.7.7 Planning

The most important aspect of constructing a compacted clay liner may be the planning stage when the inspection engineer's role is defined, contract specifications are prepared and construction strategies are worked out. The engineer must have an adequate degree of control over material selection and methods of placement. The work procedure must be flexible with respect to earth movement.

Ideally, the borrow for a compacted clay liner would be the cut material just below the eventual pond invert. Thus, material may be cut and placed in a single operation for much of the pond liner area, although some stockpiling of borrow may be inevitable.

The lower lift of the liner might consist of reworked native soil broken up by tilling and re-compacted to eliminate fissures, etc. Nevertheless, the contract should allow for selective borrowing of cut material for liner use, for stockpiling, removal of undesirable materials and possible additional borrowing outside of the cut area.

8.6.8 Prefilling

Prefilling the pond should be considered in order to protect the liner, to prevent weed growth, to reduce odour and to maintain moisture content of the seal. However, the dykes must be completely prepared as described in Design Section 7.6.6.2 b before the introduction of water.

8.6.9 Influent Lines

8.6.9.1 Material

Any generally accepted material for underground sewer construction will be given consideration for the influent line to the pond. Unlined corrugated metal pipe should be avoided however, due to corrosion problems. In material selection, consideration must be given to the quality of the wastes, exceptionally heavy external loadings, abrasion, soft foundations and similar problems.

8.6.9.2 Surcharging

The design and construction of influent piping shall insure that where surcharging exists, due to the head of the pond, no adverse effects will result. These effects shall include basement flooding and overtopping of manholes.

8.6.9.3 Forcemains

Forcemains terminating in a sewage stabilization basin should be fitted with an isolation valve immediately upstream of the stabilization basin.

8.6.9.4 Location

Influent lines should be located along the bottom of the pond so that the top of the pipe is below the average elevation of the pond seal. However, the pipe shall have adequate seal below it. The use of an exposed dyke to carry the influent line to the discharge points is prohibited.

8.6.9.5 Point of Discharge

The influent line to a square single celled pond should be essentially centre discharging. Each square cell of a multiple celled pond operated in parallel shall have its own near centre inlet but this does not apply to those cells following the primary cell, when series operation alone is used. Influent lines to single celled rectangular ponds should terminate at approximately the third point farthest from the outlet structure. Influent and effluent
piping should be located to minimize short-circuiting within the pond. Consideration should be given to multi-influent discharge points for primary cells of 5 ha or larger.

All aerated cells shall have influent lines which distribute the load within the mixing zone of the aeration equipment. Consideration of multiple inlets should be closely evaluated for any diffused aeration system. For aerated stabilization basins the inlet pipe may go directly through the dyke and end at the toe of the inner slope.

8.6.9.6 Influent Discharge Apron
Inlet pipes should terminate 450 mm above the cell bottom.

The end of the discharge line shall rest on a suitable concrete apron large enough to prevent the terminal influent velocity at the end of the apron from causing soil erosion. A minimum size apron of one metre square shall be provided.

8.6.9.7 Pipe Size
The influent system shall be sized to permit peak raw sewage flow to be directed to any one of the primary cells. Influent piping should provide a minimum scouring velocity of 0.6 m/s.

8.6.10 Control Structure and Interconnecting Piping
8.6.10.1 Structure
Facility design shall consider the use of multi-purpose control structures to facilitate normal operational functions such as drawdown and flow distribution, flow and depth measurement, sampling, pumps for recirculation, chemical additions and mixing and minimization of the number of construction sites within the dykes.

Control structures shall:
• Be accessible for maintenance and adjustment of controls;
• Be adequately ventilated for safety and to minimize corrosion;
• Be locked to discourage vandalism;
• Contain controls to permit water level and flow rate control, complete shutoff and complete draining;
• Be constructed of non-corrodible materials (metal-on-metal contact in controls should be of similar alloys to discourage electro-chemical reactions); and
• Be located to minimize short-circuiting within the cell and avoid freezing and ice damage.

Recommended devices to regulate water level are valves, slide tubes, dual slide gates, or effluent chambers complete with a water level regulating weir. Regulators should be designed so that they can be preset to stop flows at any pond elevation.

8.6.10.2 Piping
All piping shall be of ductile iron, PVC, or HDPE. The piping shall not be located within or below the liner. Pipes should be anchored with adequate erosion control.

8.6.10.2.1 Drawdown Structure Piping
Submerged Takeoffs
For ponds designed for shallow or variable depth operations, submerged takeoffs are recommended. Intakes shall be located a minimum of three metres from the toe of the dyke and 0.6 metres from the top of the liner and shall employ vertical withdrawal.
Multi-level Takeoffs
For ponds that are designed deep enough to permit stratification of pond content, multiple takeoffs are recommended. There shall be a minimum of 3 withdrawal pipes at different elevations. The bottom pipe shall conform to a submerged takeoff. The others should utilize horizontal entrance. Adequate structural support shall be provided.

Surface Takeoffs
For use under constant discharge conditions and/or relatively shallow ponds under warm weather conditions, surface overflow-type withdrawal is recommended. Design should evaluate floating weir box or slide tube entrance with baffles for scum control.

Maintenance Drawdown
All ponds shall have a pond drain to allow complete emptying, either by gravity or pumping, for maintenance. These should be incorporated into the above-described structures.

In aerated stabilization basins where a diffused air aeration system and submerged air headers are used, provision should be made to drain each stabilization basin (independently of others) below the level of the air header.

Emergency Overflow
All cells shall be provided with an emergency overflow system which overflows when the liquid reaches within 0.6 m of the top of the berms.

8.6.10.2.2 Hydraulic Capacity
The hydraulic capacity for continuous discharge structures and piping shall allow for at least the expected future peak sewage pumping rate.

The hydraulic capacity for controlled discharge systems shall permit transfer of water at a rate of 150 mm of pond water depth per day at the available head.

8.6.10.2.3 Interconnecting Piping
Interconnecting piping for multiple unit installations operated in series should be valved or provided with other arrangements to regulate flow between structures and permit flexible depth control. The interconnecting pipe to the secondary cell should discharge horizontally near the stabilization basin bottom to minimize need for erosion control measures and should be located as near the dividing dyke as construction permits. Interconnection piping shall enable parallel or series flow patterns between cells.

8.6.10.3 Location
The outlet structure and the inter-connecting pipes should be located:
- Away from the corners where floating solids accumulate; and
- On the windward side to prevent short-circuiting.

8.6.11 Miscellaneous
8.6.11.1 Groundwater Monitoring
An approved system of wells or lysimeters may be required around the perimeter of the pond site to facilitate groundwater monitoring. The need for such monitoring will be determined on a case-by-case basis.
8.6.11.2 Pond Level Gauges
Pond level gauges shall be provided.

8.6.11.3 Service Building
A service building for laboratory and maintenance equipment shall be provided, if required.

8.6.11.4 Liquid Depth Operation
Optimum liquid depth is influenced to some extent by stabilization basin area since circulation in larger installations permits greater liquid depth. The basic plan of operation may also influence depth. Facilities to permit operation at selected depths between 0.6 to 1.5 metres are recommended for operational flexibility. Where winter operation is desirable, the operating level can be lowered before ice formation and gradually increased to 1.5 metres by the retention of winter flows. In the spring, the level can be lowered to any desired depth at the time surface runoff and dilution water are generally at a maximum. Shallow operation can be maintained during the spring with gradual increased depths to discourage emergent vegetation in the summer months. In the fall, the levels can be lowered and again be ready for retention of winter storage.

8.6.11.5 Pre-Treatment and Post-Treatment
The wastewater shall be treated by bar screens before entering the stabilization basin. The treated effluent shall be disinfected prior to discharging into the receiving water.

8.7 Other Biological Systems
New biological treatment schemes with promising applicability in wastewater treatment may be considered if the required engineering data for new process evaluation is provided in accordance with Section 5.4.2. A number of new biological systems are described below. These systems typically are manufactured by companies who hold proprietary designs and as proprietary information cannot be included in this manual the design data presented is fairly general in nature. A description of these systems mainly describing their application and typical loading rates is provided here.

8.7.1 Biological Aerated Filters
Biological Aerated Filters (BAFs) are submerged, granular media upflow filters, which treat wastewater by biologically converting carbonaceous and nitrogenous matter using biomass fixed to the media and physically capturing suspended solids within the media. The filters are aerated to remove carbonaceous matter and convert ammonia-nitrogen to nitrates via nitrification. Non-aerated filters in the presence of supplemental carbonaceous organic matter can convert nitrates to nitrogen gas through denitrification.

BAFs are designed either as co-current backwash or countercurrent backwash systems. The co-current backwash design has a nozzle deck supporting a granular media that has a specific gravity greater than 1.0. Pre-treated wastewater is introduced under the nozzle deck and flows up through a slightly expanded media bed, and effluent leaves the filter from above the media. Process air is introduced just above the nozzle deck (the bed is not aerated for denitrification). During backwash, wash water and air scour are introduced below the nozzle deck and flow up through the bed. Wash water is pumped to the head of the plant or directly to solids handling.

The countercurrent backwash BAF operates under the same general principles, except that the granular media has a specific gravity less than 1.0, therefore, the media float and are retained from above by the nozzle deck. During backwash, wash water flows by gravity through the media. Process air is introduced below the media; therefore, scour air moves countercurrent to the wash water flow.
8.7.1.1 Design Features

The granular media bed for both designs typically is 3 to 4 m deep and the media are 3 to 6 mm in diameter. The media-specific surface area ranges from 500 to 2,000 m2/m3. The contact time in the media typically is 0.5 to 1.0 hour. The media bed is backwashed every 24 to 48 hours for 20 to 40 minutes using a wash water volume about three times the media volume. Backwash water from a single event is collected in a storage tank and returned to the head of the plant or directly to solids processing over a 1- to 2-hour period. Backwash water typically contains from 400 to 1,200 mg/ℓ of suspended solids. The backwash water recycle flow can represent up to 20% of the raw influent wastewater flow. Most manufacturers have estimated that solids production from the BAF system is comparable to that of a conventional activated sludge system. Effluent pollutant concentrations from a single BAF cell increases for approximately 30 minutes following a backwash event, so a minimum of four cells should be included in any design to dampen these spikes.

The nozzle deck features polyethylene nozzles that prevent media loss and assist in evenly distributing flow across the bed. The reported media loss from the BAF system is less than 2% per year. The nozzle openings are slightly smaller than the media and require that influent be pre-treated with a fine screen to prevent plugging. Headloss across the media bed can be more than 2 m prior to backwash. In existing installations, the filters are constructed above grade. The combination of the tall structure (6 m) and headloss across the bed requires pumping influent flow to the BAF in most situations. In addition, the co-current designs require pumping of wash water, which is significant, by intermittent, energy demand.

Process air is required in BAF cells that are removing carbonaceous organic matter (BOD) and are nitrifying ammonia-nitrogen. The process aeration system consists of coarse- to medium-bubble diffusers on a stainless steel piping grid. Because of the difficulty in accessing the aeration grid, the diffusers are constructed as simply and reliably as possible. The amount of air that must be added to the system is determined by the oxygen demand of the biomass. Energy for process air can represent more than 80% of the energy demand in a BAF system.

8.7.1.2 Configurations

BAFs can operate in different process configurations, depending on the facilities, effluent goals, and wastewater characteristics. The process can follow either chemically assisted primary sedimentation or an activated sludge system. This level of treatment is required because of a BAF system's sensitivity to high influent BOD and suspended solids loadings. Following primary sedimentation, BAF cells can be operated for carbonaceous BOD removal or, under lower loading rates (less than 1.5 kg BOD/m3.d), for both carbonaceous BOD and ammonia-nitrogen removal. A cell can operate in a nitrification mode following an activated sludge system or another BAF cell removing carbonaceous BOD. A denitrification BAF process can follow either an activated sludge or BAF system that is nitrifying.

8.7.1.3 Performance

The performance of BAFs in terms of allowable loading rates and effluent quality depends on influent wastewater quality and temperature. In general, higher organic or suspended solids influent loadings result in higher effluent concentrations. Adequate water velocity is necessary to provide scouring of the biomass and even flow distribution across the media bed. Inadequate water velocity can result in premature bed plugging; this is especially true for denitrification reactors in which the effects of air scouring are not present.

Factors that positively affect complete nitrification include:
- Warm water temperature,
- Adequate aeration and good air distribution, and
- Low carbonaceous BOD and suspended solids loading.
Denitrification usually requires methanol addition, and water velocities must be greater than 10 m/h.

8.7.2 Moving Bed Biofilm Reactors

The patented Moving Bed Biofilm Reactor (MBBR) process was developed by the Norwegian company Kaldnes Miløteknologi (KMT). The basic concept of the MBBR is to have continuously operating, non-clogable biofilm reactors with no need for backwashing or return sludge flows, low head-loss and high specific biofilm surface area. This is achieved by having the biomass grow on small carrier elements that move along with the water in the reactor. The movement is normally caused by coarse-bubble aeration in the aeration zone and mechanical mixing in an anoxic/anaerobic zone.

For small plants, mechanical mixers are omitted for simplicity reasons and pulse aeration for a few seconds a few times per day can be used to move the biofilm carriers in anoxic reactors.

The biofilm carrier elements are made of 0.96 specific gravity polyethylene and shaped like small cylinders, with a cross in the inside of the cylinder and longitudinal fins on the outside. To keep the biofilm elements over the surface of the screen, the scrubbing action prevents clogging.

Almost any size or shape tank can be retrofitted with the MBBR process. The filling of carrier elements in the reactor may be decided for each case, based on degree of treatment desired, organic and hydraulic loading, temperature and oxygen transfer capability. The reactor volume is totally mixed and consequently there is no "dead" space or unused space in the reactor. Organic loading rates for these reactors are typically in the order of 3.5 – 7.0 g BOD/m² of media surface area/d for BOD removal and less than 3.5 g BOD/m² of media surface area/d for nitrification.

8.7.3 Membrane Bioreactors

Membrane Bioreactors consist of a suspended growth biological reactor (activated sludge system variation) integrated with a microfiltration membrane system. The key to the technology is the membrane separator which allows elevated levels of biomass to degrade or remove the soluble form of the organic pollutants from the waste stream. These systems typically operate in the nanofiltration or microfiltration range which results in removal of particles greater than 0.01 and 0.1 μm, respectively.

8.7.3.1 Configuration

Membrane bioreactors can be configured in a number of different ways. However, the two main configurations differ by those in which the membranes are submersed directly in the bioreactor and those which contain external membrane process tankage. When membrane modules are submersed into the bioreactor, they are in direct contact with the wastewater and sludge. A vacuum is created within the hollow fibres by the suction of a permeate pump. The treated water passes through the membrane, enters the hollow fibres and is pumped out by the permeate pump. An air flow may be introduced to the bottom of the membrane module to create turbulence which scrubs and cleans the membrane fibres keeping them functioning at a high flux rate. The filtrate or permeate is then collected for reuse or discharge.

Outboard membrane processes operate in a similar manner however, the membranes are contained in a separate tank through which the wastewater requiring filtration constantly flows. Again, air is often added for both treatment and membrane scouring purposes. The main difference between the two configurations lies in the membrane cleaning processes where membranes submersed within the aeration tanks must be removed for cleaning while outboard membranes are cleaned by evacuating the membrane tankage and providing for equalization during the cleaning procedures within the main aeration tank.
8.7.3.2 Process Description
The benefits of these processes are consistent effluent quality, reduced footprint, increased expansion capabilities within the same tankage, and ease of operation. Tertiary quality effluent is the normal output of a membrane bioreactor.

Virtually no solids are lost via the permeate stream and the wasting of solids is reduced. As a result, the sludge age can be very accurately determined. Nitrification for ammonia removal is easily achieved by optimizing reactor and sludge age to specific wastewater characteristics and effluent requirements. Absolute control of the nitrifiers results in high nitrification rates even in winter periods and under adverse and unstable conditions.

If required, denitrification can be achieved with membrane processes because, when operating at a MLSS of 15,000 mg/l and higher, the mixed liquor rapidly becomes anoxic in the absence of a continuous stream of air. Furthermore, the high level of biomass ensures that in the anoxic zone, at all times there is enough de-nitrifiers to efficiently convert the nitrates into nitrogen gas.

8.7.4 Recirculating Filters
Recirculating filters provide advanced secondary treatment of settled wastewater or septic tank effluent using sand, gravel or other media. Recirculating filters consist of a lined excavation or structure, filled with uniform washed sand that is placed over an underdrain system. Through a distribution network the wastewater is dosed onto the surface and percolates through the media to the underdrain system. The underdrain system collects filter effluent and directs it to the recirculation tank for further processing or discharge.

8.7.4.1 Recirculating Sand Filters
Recirculating sand filters (RSFs) are aerobic, fixed-film bioreactors. Physical processes that occur in sand filters include straining and sedimentation which remove suspended solids within the pores of the media. Chemical absorption of constituents such as phosphorus also occurs. Bioslimes from the growth of microorganisms develop as films on the sand particle surfaces. As the wastewater percolates through the sand the microorganisms in the slimes absorb the soluble and colloidal waste materials. The absorbed materials are either incorporated into a new cell mass or degraded under aerobic conditions to carbon dioxide and water.

8.7.4.2 Applications
Recirculating sand filters can be used for applications including; single-family residences, large commercial establishments, and small communities. They can be used to pre-treat wastewater prior to subsurface infiltration and to meet water quality requirements before direct discharge to surface water. RSFs are primarily used to treat domestic wastewater, but they have also been used successfully in treating wastewaters from restaurants and supermarkets, which are high in organic materials. Recirculating filters can be used for both large and small flows and are frequently used where nitrogen removal is necessary.

8.7.4.3 System Components
Basic components of recirculating filters include a recirculation/dosing tank, pump and controls, distribution network, filter bed with an underdrain system, and a return line. The return line or the underdrain splits the flow to recycle a portion of the filtrate to the recirculation/dosing tank. A small volume of wastewater and filtrate is dosed to the filter surface on a timed cycle 1 to 3 times per hour. Recirculation ratios are typically between 3:1 and 5:1. The returned aerobic filtrate mixes with the anaerobic septic tank effluent in the recirculation tank before being reapplied to the filter.

There are many types of media used in packed-bed filters. The most common include washed, graded sand. However, pea gravel has generally replaced it in recent times. Other granular media which can be used include
crushed glass, garnet, anthracite, plastic, expanded clay, expanded shale, open-cell foam, extruded polystyrene, and bottom ash from coal-fired power plants. Coarse-fibre synthetic textile materials are also used but are usually restricted to proprietary units.

Recirculation tanks consist of a tank, recirculation pump and controls, and a return filter water flow splitting device. Recirculation tanks store returned filtrate, mix the filtrate with the septic tank effluent, and store peak influent flows. The recirculation pump and controls are designed to dose a constant volume of mixed filtrate and septic tank effluent flow onto the filter on a timed cycle.

Distribution methods used include rigid pipe pressure networks with orifices or spray nozzles, and drip emitters. Rigid pipe pressure networks are the most commonly used method. Orifices with orifice shields, facing upward, minimize hole blockage by stones.

The most common flow splitting devices are ball float valves, proportional splitters, and stubbed sump dividers. The ball float valve is used where the recirculation tank is designed to remain full. The valve is connected to the return filtrate line inside the recirculation tank. The return line runs through the tank. The ball float valve is open when the water level is below the normally full level. When the tank fills from either the return filtrate or the influent flow, the ball float rises to close the valve, and the remaining filtrate is discharged from the system. The proportional splitters continuously divide the flow between return filtrate and the filtrate effluent. The stubbed sump splitter consists of a sump in which two pipes are stubbed into the bottom with their ends capped. In the crowns of each capped line, a series of equal-sized, pluggable holes are drilled. The return filtrate floods the sump, and the flow is split in proportion to the relative number of holes left open in each perforated capped pipe.

Most RSFs are constructed aboveground and with an open filter surface; however, in cold climates such as in Atlantic Canada, they should be placed in the ground to prevent freezing. The filter basin can be a lined excavation or fabricated tank. Typical liner materials are polyvinyl chloride and polypropylene. The system should be arranged to allow gravity drainage of lines to prevent freezing.

The underdrain system is located on the floor of the tank or lined excavation. The ends of the underdrains should be brought to the surface of the filter and with cleanouts. The underdrain outlet is cut in the basin wall such that the drain invert is at the floor elevation and the filter can be completely drained. The underdrain outlet invert elevation must be sufficiently above the recirculation tank inlet to accommodate a minimum of 0.1 percent slope on the return line and any elevation losses through the flow splitting device. The underdrain is covered with washed, durable gravel to provide a porous medium through which the filtrate can flow to the underdrain system.

8.7.4.4 System Variant
A variance on the recirculation sand filter is the Recirculating Textile Filter (RTF) which is a proprietary wastewater treatment system. RTFs have proven to be a reliable, energy-efficient, and low-maintenance technology. Unlike other filter beds as described above, RTFs use a lightweight, compact, and easy-to-maintain textile fabric in the place of sand or stone. Typical arrangements allow for pumped liquor from the recirculation blend tank to be evenly distributed over a number of hanging lightweight, absorbent, engineered textile media. Bioslimes develop on the textile media in much the same way as on sand in RSFs. As the wastewater percolates between the textiles the microorganisms in the slimes absorb the soluble and colloidal waste materials. The absorbed materials are either incorporated into a new cell mass or degraded under aerobic conditions to carbon dioxide and water. Bioslimes will sloth off the textile and will return to the recirculation blend tank to mix with influent from the septic tank.
Additional components of the RTF system are similar to the RSF; septic tankage, recirculation blend tank, mixing valves, and pumping/distribution elements. The RTF can be housed in a FRP prefabricated tank. A large media area can be provided with increasing depths, which allow for smaller footprint requirements compared to RSFs. RTFs may be modulated for phased development growth.

Consideration should be given to the layout of RTF units so as to provide the operator with good access to the media should it be required to be removed for maintenance/cleaning.

As with RSF pre-treatment is required. Pre-treatment devices shall provide for effective removal or grit, debris and excessive oil or grease prior to the RTF units.

8.8 Miscellaneous

8.8.1 Fencing

Wastewater treatment facilities, irrespective of their mode of treatment, shall be enclosed with a suitable fence to preclude livestock and discourage trespassing. Fencing of minimum 1.8 m should be provided. The fence should be located with a minimal separation distance of 1.0 m from the top outside edge of the embankment/treatment tank/chamber. Fencing should not obstruct vehicle traffic on top of the dyke, or around process tanks/chambers. A vehicle access gate of sufficient width to accommodate equipment should be provided. All access gates should be provided with locks.

8.8.2 Access

An all-weather access road shall be provided to the treatment facility site to allow year-round maintenance of the facility.

8.8.3 Warning Signs

Appropriate signs should be provided along the fence around the facility to designate the nature of the facility and warn against trespassing. At least one sign shall be provided on each side of the site and one for every 150 m of its perimeter.

8.8.4 Flow Measurement

Provisions for flow measurement shall be provided on the outlet. Safe access to the device should be made to permit safe measurement. Flow meters should be equipped with data loggers for storage of historic flows. Preference is given to data loggers that do not require discrete software for interrogation by the operator.

8.8.5 Service Building

A service building for laboratory and maintenance equipment shall be provided, if required.

1. U.S. Environmental Protection Agency: Onsite Wastewater treatment Systems Technology Fact Sheet 11, Recirculating Sand/Media Filters.
Chapter 9 Treated Effluent Disinfection

9.1 Basis for Disinfection of Treated Effluent

9.2 Forms of Disinfection

9.3 Chlorine Disinfection

9.3.1 Type

9.3.2 Dosage

9.3.3 Containers

9.3.3.1 Cylinders

9.3.3.2 Ton Containers

9.3.3.3 Tank Cars

9.3.3.4 Liquid Hypochlorite Solutions

9.3.3.5 Dry Hypochlorite Compounds

9.3.4 Equipment

9.3.4.1 Scales

9.3.4.2 Evaporators

9.3.4.3 Chlorinators

9.3.4.4 Hypochlorite Metering

9.3.4.5 Diffusers

9.3.4.6 Mixing

9.3.4.7 Contact Time and Tank

9.3.4.8 Piping and Connections

9.3.4.9 Standby Equipment and Spare Parts

9.3.4.10 Chlorinator Water Supply

9.3.4.11 Leak Detection and Controls

9.3.4.12 Cylinder and Container Handling

9.3.4.13 Chlorinator Alarms

9.3.5 Housing

9.3.5.1 Gas Chlorine Feed and Storage Rooms

9.3.5.2 Inspection Window

9.3.5.3 Drains

9.3.5.4 Heat

9.3.5.5 Ventilation

9.3.5.6 Vents

9.3.5.7 Electrical Controls and Ambient Gas Detectors
9.3.5.8 Respiratory Protection ... 187
9.3.5.9 Safety Equipment .. 187
9.3.5.10 Hypochlorite Feed and Storage Rooms 187

9.3.6 Sampling and Control ... 187
 9.3.6.1 Sampling .. 187
 9.3.6.2 Testing and Control ... 187

9.3.7 Methods of Dosage Control ... 188
 9.3.7.1 Open-Loop Flow-Proportional Control 188
 9.3.7.2 Closed-Loop Flow-Proportional Control 188

9.4 De-chlorination .. 188
 9.4.1 General ... 188
 9.4.2 Dosage ... 189
 9.4.3 Containers ... 189
 9.4.4 Feed Equipment, Mixing, and Contact Requirements 189
 9.4.4.1 Equipment ... 189
 9.4.4.2 Mixing Requirements .. 190
 9.4.4.3 Contact Time ... 190
 9.4.4.4 Standby Equipment and Spare Parts 190
 9.4.4.5 Sulphonator Water Supply .. 190
 9.4.5 Housing Requirements .. 190
 9.4.5.1 Feed and Storage Rooms ... 190
 9.4.5.2 Protective and Respiratory Gear .. 190
 9.4.6 Sampling and Control .. 190
 9.4.6.1 Sampling ... 190
 9.4.6.2 Testing Control ... 190
 9.4.7 Activated Carbon ... 190

9.5 Ultraviolet (UV) Disinfection ... 191
 9.5.1 Lamp Type .. 191
 9.5.2 Channel Design and Hydraulics .. 191
 9.5.3 Transmittance .. 191
 9.5.3.1 Suspended Solids ... 191
 9.5.3.2 Wastewater Iron Content .. 191
 9.5.3.3 Hardness ... 192
 9.5.3.4 Industrial Discharges ... 192
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5.4</td>
<td>Dosage</td>
<td>192</td>
</tr>
<tr>
<td>9.5.5.1</td>
<td>Electrical</td>
<td>192</td>
</tr>
<tr>
<td>9.5.5.2</td>
<td>UV Radiation</td>
<td>192</td>
</tr>
<tr>
<td>9.5.5.3</td>
<td>Cleaning Mechanisms</td>
<td>192</td>
</tr>
<tr>
<td>9.5.5.5</td>
<td>Operations, Safety and Alarm System</td>
<td>192</td>
</tr>
<tr>
<td>9.5.6</td>
<td>Controls</td>
<td>193</td>
</tr>
<tr>
<td>9.6</td>
<td>Ozone Disinfection</td>
<td>193</td>
</tr>
<tr>
<td>9.7</td>
<td>Reference Manuals</td>
<td>193</td>
</tr>
</tbody>
</table>
Chapter 9 Treated Effluent Disinfection

9.1 Basis for Disinfection of Treated Effluent

Disinfection of sewage treatment plant effluent shall be required in all cases, unless confirmed otherwise by the Regulator. The regulator shall be consulted for Province-specific requirements when designing a disinfection system.

The design shall consider meeting both the bacterial standards and the disinfectant residual limit in the effluent. The disinfection process should be selected after due consideration of waste characteristics, type of treatment process provided prior to disinfection, waste flow rates, pH of waste, disinfectant demand rates, current technology application, cost of equipment and chemicals, power cost, and maintenance requirements.

9.2 Forms of Disinfection

Ultraviolet (UV) radiation and chlorination are the most commonly used methods for wastewater effluent disinfection. The forms most often used for chlorination are liquid chlorine and calcium or sodium hypochlorite. Other disinfectants, including chlorine dioxide, ozone, or bromine, may be accepted by the regulator in individual cases. If chlorination is used, de-chlorination is necessary to meet the effluent limits in the WSER federal legislation. The use of chlorination tablets along with de-chlorination tablets may be considered for small systems.

9.3 Chlorine Disinfection

9.3.1 Type

Chlorine is available for disinfection in gas, liquid (hypochlorite solution), and solid (Hypochlorite tablets) form. The type of chlorine should be carefully evaluated during the facility planning process. The use of chlorine gas or liquid will be most dependent on the size of the facility and the chlorine dose required. Large quantities of chlorine, such as are contained in tonne cylinders and tank cars, can present a considerable hazard to plant personnel and to the surrounding area, should such containers develop leaks. The designer shall consider the provisions of the Federal "Transportation of Dangerous Goods Act", the Federal “Environmental Protection Act (1999)" (specifically the Environmental Emergency Regulations), and the applicable Provincial Dangerous Goods Legislation when designing a disinfection system. Both monetary cost and the potential public exposure to chlorine should be considered when making the final determination.

9.3.2 Dosage

For disinfection, the capacity shall be adequate to produce an effluent that will meet the applicable bacterial limits specified by the regulatory agency for that installation. Required disinfection capacity will vary, depending on the uses and points of application of the disinfection chemical. The chlorination system shall be designed on a rational basis and calculations justifying the equipment sizing and number of units shall be submitted for the whole operating range of flow rates for the type of control to be used. System design considerations shall include the controlling wastewater flow meter (sensitivity and location), telemetering equipment and chlorination controls. The system should be capable of maintaining a total chlorine residual of at least 0.5 mg/L following the chlorine contact chamber, to provide disinfection to typical levels required by the Regulator. For normal domestic wastewater, the dosages in Table 9.1 may be used as a guide in sizing chlorination facilities.
Table 9.1 Typical Chlorine Dosage Requirements

<table>
<thead>
<tr>
<th>Type of Treatment</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trickling filter/RBC plant effluent</td>
<td>10 mg/L</td>
</tr>
<tr>
<td>Activated sludge/RTF plant effluent</td>
<td>8 mg/L</td>
</tr>
<tr>
<td>Tertiary filtration effluent</td>
<td>6 mg/L</td>
</tr>
<tr>
<td>Nitrified effluent</td>
<td>6 mg/L</td>
</tr>
</tbody>
</table>

9.3.3 Containers

9.3.3.1 Cylinders
Seventy-kilogram cylinders should be used when chlorine demand is less than 70 kilograms per day. Cylinders should be stored in an upright position with adequate support brackets and chains at 2/3-cylinder height for each cylinder. Refer to Section 5.9.

9.3.3.2 Ton Containers
The use of ton (907 kg) containers should be considered where the average daily chlorine consumption is over 70 kilograms. A hoist or crane with a capacity of at least 2000 kg shall be provided for the handling of the ton containers. Refer to Section 5.9.

9.3.3.3 Tank Cars
Refer to Recommended Standards for Wastewater Facilities (2014).

9.3.3.4 Liquid Hypochlorite Solutions
Storage containers for hypochlorite solutions shall be of sturdy, non-metallic lined construction and shall be provided with secure tank tops and pressure relief and overflow piping. Storage tanks should be either located or vented outside. Provision shall be made for adequate protection from light and extreme temperatures. Tanks shall be located where leakage will not cause corrosion or damage to other equipment. A means of secondary containment shall be provided to contain spills and facilitate cleanup. Due to deterioration of hypochlorite solutions over time, it is recommended that containers not be sized to hold more than one month’s needs. At larger facilities and locations where delivery is not a problem, it may be desirable to limit on-site storage to one week. Refer to Section 5.9.

9.3.3.5 Dry Hypochlorite Compounds
Dry hypochlorite compounds should be kept in tightly closed containers and stored in a cool, dry location. Some means of dust control should be considered, depending on the size of the facility and the quantity of compound used. Refer to Section 5.9.

9.3.4 Equipment

9.3.4.1 Scales
Scales of proper size shall be provided at all plants using chlorine gas. At large plants, scales of the indicating and recording type are recommended. At the least a platform scale shall be provided. Scales shall be of corrosion-resistant material. Scales shall be set on grade, or a ramp shall be built to facilitate the moving of cylinders on and off the scale platform. Scales should be provided to accommodate the maximum number of containers on line.
9.3.4.2 Evaporators
Where manifolding of several cylinders or 907 kg containers will be required to supply sufficient chlorine, consideration should be given to the installation of a chlorine evaporator to produce the quantity of gas required.

9.3.4.3 Chlorinators
All chlorinators shall be vacuum-type chlorinators and should have automatic switchover capability.

9.3.4.4 Hypochlorite Metering
Application of hypochlorite for the purpose of disinfection should be by metering pumps specifically designed for this purpose. Calcium hypochlorite should be initially mixed in a make-up tank prior to any chlorination purpose.

9.3.4.5 Diffusers
A chlorine solution diffuser shall be placed ahead of the contact tank and near the mixing area.

9.3.4.6 Mixing
The disinfectant shall be positively mixed as rapidly as possible, with a complete mix being effected in three seconds. This may be accomplished by either the use of a turbulent flow regime or a mechanical flash mixer.

9.3.4.7 Contact Time and Tank
For a chlorination system, a minimum contact period of 15 minutes at design peak hourly flow or maximum rate of pumping shall be provided after thorough mixing. For evaluation of existing chlorine contact tanks, field tracer studies should be done to assure adequate contact time.

The chlorine contact tank shall be constructed so as to reduce short-circuiting of flow to a practical minimum. Tanks not provided with continuous mixing shall be provided with "over-and-under" or "end-around" baffling to minimize short-circuiting.

The tank should be designed to facilitate maintenance and cleaning without reducing effectiveness of disinfection. Duplicate tanks, mechanical scrapers, or portable deck-level vacuum cleaning equipment shall be provided. Consideration should be given to providing skimming devices on all contact tanks. Covered tanks are discouraged.

9.3.4.8 Piping and Connections
Piping systems should be as simple as possible, specifically selected and manufactured to be suitable for chlorine service, with a minimum number of joints. Piping should be well supported and protected against temperature extremes of climate change.

Due to the corrosiveness of wet chlorine, all lines designated to handle dry chlorine shall be protected from the entrance of water or air containing water. Even minute traces of water added to chlorine results in a corrosive attack. Low pressure lines made of hard rubber, saran-lined, rubber-lined, polyethylene, polyvinylchloride (PVC), or other approved materials are satisfactory for wet chlorine or aqueous solutions of chlorine.

The chlorine system piping and valves shall be color coded and labeled to distinguish it from other plant piping. Refer to Section 5.5.5. Where sulfur dioxide is used, the piping and fittings for chlorine and sulfur dioxide systems shall be designed so that interconnection between the two systems cannot occur. Minimum 25 mm diameter piping shall be used.
9.3.4.9 Standby Equipment and Spare Parts
Standby equipment of sufficient capacity should be available to replace the largest unit during shutdowns. Spare parts shall be available for all disinfection equipment to replace parts which are subject to wear and breakage.

9.3.4.10 Chlorinator Water Supply
An ample supply of water shall be available for operating the chlorinator. Where a booster pump is required, duplicate equipment should be provided, and, when necessary, standby power as well. Protection of a potable water supply shall conform to the requirements of Section 4.2.9. Adequately filtered plant effluent should be considered for use in the chlorinator.

9.3.4.11 Leak Detection and Controls
A bottle of 56 percent ammonium hydroxide solution shall be available for detecting chlorine leaks. Where ton (907 kg) containers or tank cars are used, a leak repair kit approved by the Chlorine Institute shall be provided. Consideration should be given to the provision of caustic soda solution reaction tanks for absorbing the contents of leaking one-ton (907 kg) containers where such containers are in use. Automatic gas detection and related alarm equipment shall be provided.

9.3.4.12 Cylinder and Container Handling
Chlorine cylinders (70 kg) shall be conveyed by a wheeled cart.

Handling of 907 kg containers requires hoisting equipment. It is desirable to use a power-operated hoist and travel particularly when it is necessary to change containers frequently. All hoists must be rated for full load, including the weight of the empty containers and lifting tackle. Hoisting equipment under normal duty service must be visually inspected by the operator for damage before each use (minimum monthly), and have an annual record inspection performed.

9.3.4.13 Chlorinator Alarms
Each chlorinator in large plants shall be equipped with a vacuum switch that should close or open a contact (and start an alarm) when there is an unusually high or low vacuum in the line from the chlorinator to the injector. Medium size plants should include such vacuum switch-alarm systems.

9.3.5 Housing
Under the federal “Environmental Emergency Regulations”, anyone storing or using a listed substance above the specified thresholds, or who has a container with a capacity for that substance in excess of the specified quantity, will have to notify Environment Canada of the place where the substance is held, along with the maximum expected quantity and the size of the largest container for that substance. If both the above criteria are exceeded, the person is required to prepare and implement an environmental emergency plan and notify Environment Canada accordingly.

Chemical buildings or storage areas should be provided with adequate warning signs, conspicuously displayed where identifiable hazards exist, a storage area for Safety Data Sheets (SDS) as set out under the federal Hazardous Products Act and associated Controlled Products Regulations. All storage containers should be conspicuously labelled with a Workplace Hazardous Materials Information System (WHMIS) label that includes: the product name, the supplier name, hazard symbol(s), risk, precautionary measures and first aid measures.
9.3.5.1 Gas Chlorine Feed and Storage Rooms
If gas chlorination equipment and chlorine cylinders are to be in a building used for other purposes, a gas-tight partition shall separate this room from any other portion of the building. Doors to the chlorinator room shall open only to the outside of the building and shall be equipped with panic hardware. Such rooms shall be at ground level and should permit easy access to all equipment. The building shall be of fireproof material. The distance from any point in the room and the outside door shall not exceed five metres.

The storage area should be separated from the feed area. A "DANGER" sign shall be placed on the door and safety precaution instructions to start up and shutdown shall be placed at a visible location on the wall. Full and empty chlorine cylinders shall be stored separately and shall be chained to the wall in the vertical position. Cylinders should not be stored near flammable materials, heating or ventilation units, elevator shafts and on uneven or subsurface floors.

Chlorination equipment should be situated as close to the application point as reasonably possible. For additional safety considerations, refer to Section 5.9.

9.3.5.2 Inspection Window
A clear glass, gas-tight window shall be installed in an exterior door or interior wall of the chlorinator room to permit the chlorinator to be viewed without entering the room.

9.3.5.3 Drains
Floor drains are not permitted in chlorine gas feed and/or storage rooms, except in installations using evaporators. Where, approved, floor drains must be constructed of corrosion-resistant materials and must discharge to a drainage system separate from the rest of the treatment facility.

9.3.5.4 Heat
The chlorinator room shall be provided with a means of heating so that a temperature of at least 16°C can be maintained, but the room should be protected from excess heat. Cylinders shall be kept at essentially room temperature. If liquid hypochlorite solution is used, the containers may be located in an unheated area.

9.3.5.5 Ventilation
With gas chlorination systems, forced, mechanical ventilation shall be installed which will provide one complete air change per minute when the room is occupied. The entrance to the air exhaust duct from the room shall be 300 mm above the floor and the point of discharge shall be so located as not to contaminate the air inlet to any buildings or present a hazard to inhabited areas. The air inlet shall be located near the ceiling on the opposite side of the room so as to provide cross ventilation with air and at such temperatures that will not adversely affect the chlorination equipment. The outside air inlet shall be at least 0.9 m above grade. The vent hose from the chlorinator should discharge above grade to the atmosphere. Where public exposure may be extensive such as residential or densely populated areas, scrubbers may be required on ventilation discharge.

9.3.5.6 Vents
All chlorinators shall have a pressure/vacuum relief vent system. Each chlorinator should have a dedicated vent which should be carried to the outside atmosphere, without traps, to a safe area. The ends of the vent lines should point down, be covered with a copper wire screen to exclude insects, and should not be more than 7.5 m above the chlorinator. The line should have a slight downward pitch from the high point (directly above the chlorinator) to drain any condensate away from the chlorinator. It is acceptable to run the vent vertically (but no more than 7.5 m) above the chlorinator to the roof, with a 180° return bend at the exit.
Each external chlorine pressure-reducing valve should be checked to see if it is provided with a vent; some are not vented, depending on the chlorine capacity. When supplied, these vents should drain away from the valves. These valves should be located high enough so that the individual drains will have a continuous downgrade to the outside atmosphere.

Evaporators have a steam vapour vent which can be manifolded together and discharged to the atmosphere without traps.

9.3.5.7 Electrical Controls and Ambient Gas Detectors
Switches for fans and lights shall be outside of the room at the entrance. A labeled signal light indicating fan operation should be provided at each entrance, if the fan can be controlled from more than one point. The controls for the fans and lights shall be such that they will automatically operate when the door is open. All electrical equipment shall be vapour-proof. Fans and lights should be on the same off and on switch whenever possible. An ambient chlorine gas detector should be provided in the chlorine storage room. The gas detector should be interlocked with the fan and audible or visual alarms.

9.3.5.8 Respiratory Protection
A self-contained air-supply breathing apparatus in good operating condition, meeting the requirements of the Canadian Standards Association (CSA-Z94.4), shall be available at all installations where chlorine gas is handled. This equipment shall be stored outside of any room where chlorine is used or stored. Instructions for using, testing and replacing parts and air tanks shall be posted. The units shall use compressed air, have at least 30-minute capacity and be compatible with the units used by the fire department responsible for the plant.

9.3.5.9 Safety Equipment
Safety equipment required includes a first-aid kit, a fire extinguisher, goggles and gloves, a chlorine container repair kit and an emergency eyewash and shower. Refer to Section 5.9.

9.3.5.10 Hypochlorite Feed and Storage Rooms
Chemicals containing chlorine compound should be stored in a separate room used for that purpose only. The room should be of fire-resistant construction and at or above grade. As heat and light affect the shelf life of sodium hypochlorite, the storage area should be kept cool and be protected from direct sunlight.

Calcium hypochlorite (HTH) shall be kept dry and covered. The storage area must not be serviced by automatic sprinkler systems. When heated above 170°C, HTH releases oxygen. For this reason, HTH must be kept away from flammable materials. Calcium hypochlorite storage areas should be provided with an exhaust system for the purpose of dust removal.

9.3.6 Sampling and Control
9.3.6.1 Sampling
Facilities shall be provided for sampling disinfected effluent after the contact chamber. Either grab or composite sampling, of the type and frequency required by WSER for the specific facility, shall be made for effluent chlorine residual of the disinfected effluent. Automatic sampling should be considered for improved control where appropriate.

9.3.6.2 Testing and Control
Equipment shall be provided for measuring chlorine residual, employing the standard DPD test as a minimum. The equipment shall enable residual measurement to the nearest 0.01 mg/L in the range below 0.5 mg/L. For
control purposes, but not for regulatory compliance, the dechlorination chemical itself can be measured, where any measured amount of dechlorination chemical in the final effluent represents an absence of TRC.

Demonstrated effective facilities for automatic chlorine residual analysis by amperometric titrator, recording, and proportioning systems shall be installed where the discharge occurs at points requiring rigid bacteriological controls such as on public water supply watersheds, recreational watersheds or shellfish waters or waters tributary thereto.

9.3.7 Methods of Dosage Control

An automated dosage control system should be used for all wastewater treatment facilities. The controls should adjust the chlorine dosage rate within an appropriate lag time to accommodate fluctuations in effluent chlorine demand and chlorine residual due to changes in flow and wastewater effluent characteristics. Alarms and monitoring equipment are required to promptly alert the operator in the event of any malfunction, hazardous situation, or inadequately disinfected effluent associated with the chlorine supply, including metering equipment, leaks or other problems. Consideration shall be given to the sensitivity and public health importance of the receiving water, the level of operator oversight, and the risk of false analytical readings given the wastewater effluent characteristics when selecting the appropriate type of dosage control, from the types described below.

9.3.7.1 Open-Loop Flow-Proportional Control

This method varies the rate of chlorine feed in proportion to the wastewater flow signal from a metering device. The chlorine dosage rate is manually set, and the control device varies the rate in relation to the wastewater flow rate. The required chlorine dosage shall be manually adjusted based on intermittently or automatically measured total chlorine residual at the end of the chlorine contact tank before dechlorination.

9.3.7.2 Closed-Loop Flow-Proportional Control

An online chlorine residual analyzer provides feedback to the chlorinator. The simplest method has one chlorine residual analyzer automatically collect and analyze a sample at the end of the chlorine contact tank but before de-chlorination. The flow signal and dosage signal each separately control the added chlorine feed with a compound-loop arrangement (e.g., if the residual is above the pre-determined level, the chlorine feed rate is reduced).

A system with two chlorine analyzers can also be used, where one sample is automatically collected and analyzed at the end of the chlorine contact tank but before de-chlorination, and a second sample is collected immediately downstream from the point of chlorination (diffuser). Both these dosage signals, as well as the flow signal, separately control the added chlorine feed with a compound-loop arrangement (e.g., if the residual is above the pre-determined level, the chlorine feed rate is reduced).

9.4 De-chlorination

9.4.1 General

The decisions regarding use of de-chlorination shall be made on a case-by-case basis, as required by WSER legislation.

The most common de-chlorination chemicals are sulphur compounds, particularly sulphur dioxide gas or aqueous solutions of sulphite or bisulphate. Tablet de-chlorination systems are also available for small facilities.
The type of de-chlorination system should be carefully selected considering criteria including the following: type of chemical storage required, amount of chemical needed, ease of operation, compatibility with existing equipment, and safety.

9.4.2 Dosage

The dosage of de-chlorination chemicals should depend on the residual chlorine in the effluent, the final residual chlorine limit, and the particular form of the dechlorinating chemical used. The most common dechlorinating agent is sulphite. The following forms of the compound are commonly used and yield sulphite (SO₂) when dissolved in water.

Table 9.2: De-chlorination Theoretical Dose

<table>
<thead>
<tr>
<th>De-chlorination Chemical</th>
<th>Theoretical mg/L Required to Neutralize 1 mg/l Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Thiosulfate (solution)</td>
<td>0.56</td>
</tr>
<tr>
<td>Sodium Sulfite (tablet)</td>
<td>1.78</td>
</tr>
<tr>
<td>Sulfur Dioxide (gas)</td>
<td>0.9</td>
</tr>
<tr>
<td>Sodium Meta Bisulfite (solution)</td>
<td>1.34</td>
</tr>
<tr>
<td>Sodium Bisulfite (solution)</td>
<td>1.46</td>
</tr>
</tbody>
</table>

Theoretical values may be used for initial approximations, to size feed equipment with the consideration that under good mixing conditions 10% excess dechlorinating chemical is required above theoretical values. Excess sulphur dioxide may consume oxygen at a maximum of 1.0 mg dissolved oxygen for every 4 mg SO₂.

The liquid solutions come in various strengths. The solutions may need to be further diluted to provide the proper dose of sulphite.

9.4.3 Containers

Depending on the chemical selected for de-chlorination, the storage containers will vary from gas cylinders, liquid in 190 litre drums or dry compounds. Dilution tanks and mixing tanks will be necessary when using dry compounds and may be necessary when using liquid compounds to deliver the proper dosage. Solution containers should be covered to prevent evaporation and spills.

9.4.4 Feed Equipment, Mixing, and Contact Requirements

9.4.4.1 Equipment

In general, the same type of feeding equipment used for chlorine gas may be used with minor modifications for sulphur dioxide gas. However, the manufacturer should be contacted for specific equipment recommendations. No equipment should be alternately used for the two gases. The common type of dechlorination feed equipment utilizing sulphur compounds include vacuum solution feed of sulphur dioxide gas and a positive displacement pump for aqueous solutions of sulphite or bisulphate.

The selection of the type of feed equipment utilizing sulphur compounds shall include consideration of the operator safety and overall public safety relative to the wastewater treatment plant’s proximity to populated areas and the security of gas cylinder storage. The selection and design of sulphur dioxide feeding equipment shall take into account that the gas re-liquifies quite easily. Special precautions must be taken when using ton containers to prevent re-liquefaction.

Where necessary to meet the operating ranges, multiple units shall be provided for adequate peak capacity and to provide a sufficiently low feed rate on turn down to avoid depletion of the dissolved oxygen concentrations in the receiving waters.
9.4.4.2 Mixing Requirements
The de-chlorination reaction with free or combined chlorine will generally occur within 15-20 seconds. Mechanical mixers are required unless the mixing facility will provide the required hydraulic turbulence to assure thorough and complete mixing. The high solubility of SO₂ prevents it from escaping during turbulence.

9.4.4.3 Contact Time
A minimum of 30 seconds for mixing and contact time shall be provided at the design peak hourly flow or maximum pumping rate. A suitable sampling point shall be provided downstream of the contact zone. Consideration shall be given to a means of reaeration to assure maintenance of an acceptable dissolved oxygen concentration in the stream following sulfonation.

9.4.4.4 Standby Equipment and Spare Parts
The same requirements apply as for chlorination systems.

9.4.4.5 Sulphonator Water Supply
The same requirements apply as for chlorination systems.

9.4.5 Housing Requirements
9.4.5.1 Feed and Storage Rooms
The requirements for housing SO₂ gas equipment should follow the same guidelines as used for chlorine gas.

When using solutions of the dechlorinating compounds, the solutions may be stored in a room that meets the safety and handling requirements set forth in Section 5.9. The mixing, storage, and solution delivery areas must be designed to contain or route solution spillage or leakage away from traffic areas to an appropriate containment unit.

9.4.5.2 Protective and Respiratory Gear
The self-contained air-supply breathing apparatus equipment is the same as for chlorine, (See Section 4.9). Leak repair kits of the type used for chlorine gas that are equipped with gasket material suitable for service with sulphur dioxide gas may be used. For additional safety considerations, see Section 5.9.

9.4.6 Sampling and Control
9.4.6.1 Sampling
Facilities shall be included for sampling the dechlorinated effluent for residual chlorine. Provisions shall be made to monitor for dissolved oxygen concentration after sulphonation when required by the regulatory agency.

9.4.6.2 Testing Control
Provision shall be made for manual or automatic control of sulphonator feed rates based on chlorine residual measurement or flow.

9.4.7 Activated Carbon
Granular activated carbon may be used to dechlorinate wastewater effluent. The de-chlorination reaction is dependent on the chemical state of the free chlorine, chlorine concentration and flow rate, physical characteristics of the carbon, and the wastewater characteristics. Consult vendors for specific design details.
9.5 Ultraviolet (UV) Disinfection

Ultraviolet (UV) disinfection process design, operating data, and experience are developed, but design standards are not well established. Expected performance of the UV disinfection units for the full operating range of flow rates shall be based upon experience at similar full-scale installations or thoroughly documented prototype testing with the particular wastewater. Critical parameters for UV disinfection units are dependent upon manufacturers’ design, lamp selection, tube materials, ballasts, configuration, control systems, and associated appurtenances. UV disinfection systems are proprietary and the designer should consult vendors for specific design details, such as lamp module design, cleaning systems, safety requirements and spare part needs. Spare parts and materials need to be kept on-site. For additional details on critical design and operational parameters and UV equipment refer to Environment Canada’s UV Guidance Manual for Municipal Wastewater Treatment Plants in Canada (2003).

9.5.1 Lamp Type

UV disinfection lamps should be low pressure-low intensity, low pressure-high intensity or medium pressure-high intensity.

9.5.2 Channel Design and Hydraulics

Open channel designs with modular UV disinfection units that can be removed from the flow are typically used. At least two banks in series shall be provided in each channel for disinfection reliability and to ensure uninterrupted service during tube cleaning or other required maintenance. The hydraulic properties of the system shall be designed to simulate plug flow conditions without short circuiting under the full operating flow range. In addition, water level control shall be provided to achieve the necessary exposure. The height of the wastewater above the top row of UV lamps must be rigidly controlled by a flap gate or weir for all flow rates. Hydraulic capacity and disinfection capacity of the system shall both be considered during design. Also refer to Sections 5.5.2 and 5.5.4. Closed chamber units will be reviewed on a case by case basis in accordance with Section 5.4.2.

9.5.3 Transmittance

UV light’s ability to penetrate wastewater is measured with a spectrophotometer using the same wavelength (254 nm) that is produced by germicidal lamps. This measurement is called the percent Transmittance and it is a function of all the factors which absorb or reflect UV light. As the percent transmission gets lower (higher absorbance) the ability of the UV light to penetrate the wastewater and reach target organisms decreases. The system designer must obtain samples of the wastewater during the worst conditions or carefully attempt to calculate the minimum expected UV transmission by testing wastewater from plants which have a similar influent and treatment process. The designer must also strictly define the disinfection limits since they determine the magnitude of the UV dose required. Factors listed below can affect Transmittance and should be considered.

9.5.3.1 Suspended Solids

Suspended solids in wastewater absorb or reflect the UV light before it can penetrate the solids to kill any occluded organisms. UV light can penetrate into suspended solids with longer contact times and higher intensities, but there is still a limit to the ability to kill the microorganisms.

9.5.3.2 Wastewater Iron Content

Iron can affect the UV disinfection by absorbing UV light. Dissolved iron, iron precipitate on quartz sleeves, and adsorption of iron by suspended solids, bacterial floc and other organic compounds, all decrease UV transmittance. In cases where the wastewater has an Iron level of > 0.3 mg/L, consideration should be given to pre-treatment or an alternate disinfection system.
9.5.3.3 Hardness
Calcium and magnesium salts cause water hardness. Hard water will precipitate on any warm or hot surface. Since the optimum operating temperature of the low-pressure mercury lamp is 40°C, the surface of the protective quartz sleeve will be warm. It will create a molecular layer of warm water where calcium and magnesium salts can be precipitated. These precipitates will prevent some of the UV light from entering the wastewater.

Waters which approach or are above 300 mg/L of hardness may require pilot testing of a UV system. This is especially important if very low flows or no flow situations are expected, because they allow the water to warm up around the quartz sleeves and produce excessive coating.

9.5.3.4 Industrial Discharges
Periodic influxes of industrial wastewater may contain UV absorbing organic compounds, iron or hardness, any of which may affect UV performance. Industries discharging wastes that contain such materials may be required to pre-treat their wastewater. Low concentrations of dye may be too diluted to be detected without using a spectrophotometer. Dye can readily absorb ultraviolet light thereby preventing UV disinfection.

9.5.4 Dosage
The UV dosage shall be based on the design peak hourly flow. A UV dosage not less than 24 (mW·s)/cm² shall be used after adjustments for maximum tube fouling, lamp output reduction after 8,760 hours of operation, and other energy absorption losses.

9.5.5 Operations, Safety and Alarm System
Operator safety (electrical hazards and exposure to UV radiation) and UV equipment cleaning shall be considered.

9.5.5.1 Electrical
Ground fault interruption circuitry or other CSA or CUL Approved electrical safety features should be provided.

9.5.5.2 UV Radiation
Equipment should be provided with safety interlocks that shut down the UV banks or modules if moved out of their position or the liquid level drops below the top row of lamps in a horizontal system or exposes the top portion of the UV lamps in a vertical system. The vertical system may include light shields that allow a small portion of the tops of the lamps to be exposed to air without being a hazard.

Whenever low-pressure UV lamps are to be handled, personnel should be equipped with face safety shields rated to absorb light with wavelengths ranging from 200 to 400 nm and all exposed skin should be covered. Safety shields for medium-pressure UV lamps should be rated to absorb light with wavelengths ranging from 100 to 900 nm and all exposed skin should be covered. An arc welder’s mask should be used with medium-pressure UV lamps.

9.5.5.3 Cleaning Mechanisms
Cleaning of sleeves and surfaces in contact with effluent is required due to fouling by iron, calcium, aluminum, manganese and other organic and inorganic matter in the sewage effluent. This fouling reduces UV light transmission significantly. Cleaning of the UV equipment shall be considered. Approaches include out-of-channel cleaning tanks, manual wiping and acid recirculation systems and/or automatic wiper systems. The size of the system and the likely rate of fouling shall be considered when selecting a cleaning approach.
9.5.6 Controls

A programmable logic controller (PLC) shall be provided. An uninterruptable power supply with electrical surge protection shall be provided for each PLC to retain program memory (i.e. process control program, last known set-points and measured process/equipment status etc.) through a power loss. A hard-wired backup for manual override shall be provided in addition to automatic process control. Both automatic and manual controls shall allow independent operation of each UV disinfection unit.

An alarm system shall be provided to separately indicate lamp failure, low UV intensity and any other cause of UV disinfection unit failure.

9.6 Ozone Disinfection

9.7 Reference Manuals

- Environment Canada: The Ultraviolet Disinfection Guidance Manual for Municipal Wastewater Treatment Plants in Canada, 2003
- Ontario Design Guidelines For Sewage Works, 2008
- : Recommended Standards For Wastewater Facilities, 2014
- Water Environment Federation: Ultraviolet Disinfection for Wastewater, 2015
Chapter 10 Nutrient & Tertiary Treatment .. 194

10.1 Phosphorus Removal ... 194

10.1.1 General ... 194

10.1.1.1 Applicability .. 194

10.1.1.2 Phosphorus Removal Criteria ... 194

10.1.1.3 Method of Removal .. 194

10.1.1.4 Design Basis .. 194

10.1.1.4.1 Preliminary Testing .. 194

10.1.1.4.2 System Flexibility .. 194

10.1.2 Effluent Requirements ... 194

10.1.3 Process Requirements .. 195

10.1.3.1 Dosage .. 195

10.1.3.2 Chemical Selection ... 195

10.1.3.3 Chemical Feed System .. 196

10.1.3.4 Chemical Feed Points ... 196

10.1.3.5 Flash Mixing .. 196

10.1.3.6 Flocculation .. 196

10.1.3.7 Liquid - Solids Separation ... 196

10.1.3.8 Filtration ... 196

10.1.4 Feed Systems .. 196

10.1.4.1 Location .. 196

10.1.4.2 Liquid Chemical Feed System ... 197

10.1.4.3 Dry Chemical Feed System ... 197

10.1.5 Storage Facilities ... 197

10.1.5.1 Size .. 197

10.1.5.2 Location .. 197

10.1.5.3 Accessories ... 197

10.1.6 Other Requirements ... 198

10.1.6.1 Materials... 198

10.1.6.2 Temperature, Humidity and Dust Control ... 198

10.1.6.3 Cleaning .. 198

10.1.6.4 Drains and Drawoff .. 198

10.1.7 Hazardous Chemical Handling .. 198

10.1.8 Sludge Handling .. 198
10.1.8.1 General ... 198
10.1.8.2 Dewatering ... 198
10.2 Ammonia Removal .. 198
 10.2.1 Breakpoint Chlorination .. 198
 10.2.1.1 Applicability .. 198
 10.2.1.2 Design Considerations .. 198
 10.2.1.2.1 Mixing .. 198
 10.2.1.2.2 Dosage ... 199
 10.2.1.2.3 Monitoring ... 199
 10.2.1.2.4 Standby Equipment .. 199
 10.2.1.2.5 pH Adjustment ... 199
 10.2.2 Air Stripping ... 199
 10.2.2.1 Applicability .. 199
 10.2.2.2 Design Considerations .. 200
 10.2.2.2.1 Tower Packing .. 200
 10.2.2.2.2 Hydraulic Loadings ... 200
 10.2.2.2.3 Air Requirements ... 200
 10.2.2.2.4 Temperature ... 200
 10.2.2.2.5 General Construction Features .. 200
 10.2.2.2.6 Process Control ... 200
10.3 Biological Nutrient Removal .. 201
 10.3.1 Biological Phosphorus Removal ... 201
 10.3.1.1 Mainstream Phosphorus Removal (A/O Process) .. 201
 10.3.1.2 Sidestream Phosphorus Removal (PhoStrip Process) ... 201
 10.3.1.3 Design Criteria ... 201
 10.3.2 Biological Nitrogen Removal .. 202
 10.3.2.1 Nitrification .. 202
 10.3.2.1.1 Design Criteria ... 202
 10.3.2.2 Combined Nitrification/Denitrification .. 202
 10.3.2.2.1 Bardenpho Process (Four-Stage) .. 202
 10.3.2.2.2 Oxidation Ditch ... 203
 10.3.3 Combined Biological Nitrogen and Phosphorus Removal ... 203
 10.3.3.1 A²/O Process ... 203
 10.3.3.2 Bardenpho Process (5 Stage) .. 203
10.3.3 UCT Process .. 203
10.3.4 Design Criteria .. 203
10.3.4 Sequencing Batch Reactor (SBR) .. 204
10.3.5 Detailed Design Manuals ... 204

10.4 Effluent Filtration .. 204
10.4.1 General .. 204
10.4.1.1 Applicability .. 204
10.4.1.2 Design Considerations .. 205

10.4.2 Location of Filter Systems ... 205
10.4.3 Number of Units ... 205
10.4.4 Filter Types ... 205
10.4.5 Filtration Rates .. 205
10.4.5.1 Hydraulic Loading Rate ... 205
10.4.5.2 Organic Loading Rate ... 206

10.4.6 Backwash .. 206
10.4.6.1 Backwash Rate ... 206
10.4.6.2 Backwash .. 206

10.4.7 Filter Media ... 206
10.4.7.1 Selection .. 206
10.4.7.2 Media Specifications ... 206

10.4.8 Filter Appurtenances ... 207
10.4.9 Reliability .. 207
10.4.10 Backwash Surge Control ... 207
10.4.11 Backwash Water Storage ... 207
10.4.12 Proprietary Equipment ... 207

10.5 Microscreening ... 207
10.5.1 General ... 207
10.5.1.1 Applicability .. 207
10.5.1.2 Design Considerations .. 207

10.5.2 Screen Material .. 208
10.5.3 Screening Rate ... 208
10.5.4 Backwash .. 208
10.5.5 Appurtenances .. 208
10.5.6 Reliability .. 208
10.6 Activated Carbon Adsorption

- **10.6.1 Applicability**
- **10.6.2 Design Considerations**
- **10.6.3 Unit Sizing**
 - 10.6.3.1 Contact Time
 - 10.6.3.2 Hydraulic Loading Rate
 - 10.6.3.3 Depth of Bed
 - 10.6.3.4 Number of Units
- **10.6.4 Backwashing**
- **10.6.5 Valve and Pipe Requirements**
- **10.6.6 Instrumentation**
- **10.6.7 Hydrogen Sulphide Control**
- **10.6.8 Carbon Transport**
- **10.6.9 Carbon Regeneration**
 - 10.6.9.1 Quantities of Spent Carbon
 - 10.6.9.2 Carbon Dewatering
 - 10.6.9.3 Regeneration Furnace

10.7 Constructed Wetlands

- **10.7.1 General**
- **10.7.2 Types**
- **10.7.3 Site Evaluation**
- **10.7.4 Preapplication Treatment**
- **10.7.5 Vegetation Selection and Management**
- **10.7.6 Design Parameters**
 - 10.7.6.1 Detention Time
 - 10.7.6.2 Water Depth
 - 10.7.6.3 Hydraulics and Hydrological Considerations
- **10.7.7 Vector Control**
- **10.7.8 Vegetation Harvesting**
- **10.7.9 Monitoring**

10.8 Floating Aquatic Plant Treatment Systems

- **10.8.1 General**
- **10.8.2 Plant Selection**
 - 10.8.2.1 Duckweed
10.8.2.2 Pennywort ..219
10.8.3 Types of Systems ..219
 10.8.3.1 Duckweed Systems ...219
10.8.4 Climatic Constraints ...220
10.8.5 Preapplication Treatment ..220
10.8.6 Design Parameters ..220
10.8.7 Pond Configuration ..220
 10.8.7.1 Duckweed Systems ...220
10.8.8 Plant Harvesting and Processing ...220
10.8.9 Detailed Design Guidelines ..220
Chapter 10 Nutrient & Tertiary Treatment

10.1 Phosphorus Removal

10.1.1 General

10.1.1.1 Applicability
The following factors should be considered when determining the need for phosphorus control at wastewater treatment facilities:

- The present and future phosphorus loadings from the existing municipal wastewater treatment facility to the receiving water;
- The background phosphorus levels in the receiving water and the effects of these levels on the rate of eutrophication along the entire length of receiving waters;
- The predicted response of the receiving water to increased phosphorus loadings;
- The existing and desired water quality of the receiving water along its entire length;
- The existing and projected uses and condition of the receiving water; and
- Consideration of the best practicable technology available to control phosphorus discharges.

10.1.1.2 Phosphorus Removal Criteria
A wastewater treatment facility shall be required to control the discharge of phosphorus if the following conditions exist:

- Eutrophication of the receiving water environment is either occurring or may occur at a rate which may affect the existing and potential uses of the water environment;
- The wastewater effluent discharge is contributing or may contribute significantly to the rate of receiving water eutrophication; or
- It required by the regulator.

10.1.1.3 Method of Removal
Acceptable methods for phosphorus removal shall include chemical precipitation, high rate filtration or biological processes.

10.1.1.4 Design Basis

10.1.1.4.1 Preliminary Testing
Laboratory, pilot or full-scale studies of various chemical feed systems and treatment processes are recommended for existing plant facilities to determine the achievable performance level, cost-effective design criteria, and ranges of required chemical dosages.

The selection of a treatment process and chemical dosage for a new facility should be based on such factors as influent wastewater characteristics, effluent requirements, and anticipated treatment efficiency.

10.1.1.4.2 System Flexibility
Systems shall be designed with sufficient flexibility to allow for several operational adjustments in chemical feed location, chemical feed rates, and for feeding alternate chemical compounds.

10.1.2 Effluent Requirements
If phosphorus control is required, the maximum acceptable concentration of final effluent phosphorus and/or the maximum acceptable mass loading to the receiving stream shall be established on a site-specific basis.
10.1.3 Process Requirements

10.1.3.1 Dosage
Typical chemical dosage requirements of various chemicals required for phosphorus removal are outlined in Table 10.1.

Table 10.1 Typical Chemical Dosage Requirements for Phosphorus Removal

<table>
<thead>
<tr>
<th>Type of Treatment</th>
<th>Addition Point</th>
<th>Chemical</th>
<th>Dosage Rate (Mg/ℓ)</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alum</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferric Chloride</td>
<td>6-30</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lime</td>
<td>167-200</td>
<td>185</td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary</td>
<td>Raw Sewage</td>
<td>Alum</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferric Chloride</td>
<td>6-30</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lime</td>
<td>167-200</td>
<td>185</td>
</tr>
<tr>
<td>Secondary</td>
<td>Raw Sewage</td>
<td>Lime</td>
<td>40-100</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alum</td>
<td>40-100</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferric Chloride</td>
<td>40-100</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Secondary Section</td>
<td>Lime</td>
<td>30-150</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alum</td>
<td>30-150</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferric Chloride</td>
<td>30-150</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-30</td>
<td>11</td>
</tr>
<tr>
<td>Waste Stabilization Ponds</td>
<td></td>
<td>Alum</td>
<td>100-210</td>
<td>163</td>
</tr>
<tr>
<td>Seasonal Retention Ponds</td>
<td>Batch Dosage To Cells</td>
<td>Ferric Chloride</td>
<td>17-22</td>
<td>20</td>
</tr>
<tr>
<td>Continuous Discharge Pond</td>
<td>Raw Sewage</td>
<td>Lime</td>
<td>250-350</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alum</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ferric Chloride</td>
<td>225</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lime</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alum</td>
<td>400</td>
<td>400</td>
</tr>
</tbody>
</table>

Dosages will vary with the phosphorus concentration in the effluent. The required chemical dosage shall include the amount needed to react with the phosphorus in the wastewater, the amount required to drive the chemical reaction to the desired state of completion, and the amount required due to inefficiencies in mixing or dispersion. Excessive chemical dosage should be avoided.

Alum generally is supplemented in a molar ratio in the range of a 1.4 to 2.5 mole Al/mole P. Ferric chloride is applied in a molar ratio of 2-4 mole ferric chloride/mole P for soluble phosphorus removal of greater than 90%. The precipitation of phosphorus can occur in a number of different locations during treatment processes: (a) before primary sedimentation (pre-precipitation), (b) before and following biological treatment (co-precipitation), (c) following secondary treatment (post-precipitation), and (d) at several locations in a process (split treatment).

10.1.3.2 Chemical Selection
The choice of lime or the salts of aluminum or iron should be based on the wastewater characteristics and the economics of the total system.

When lime is used it may be necessary to neutralize the high pH prior to subsequent treatment in secondary biological systems or prior to discharge in those flow schemes where lime treatment is the final step in the treatment process.
10.1.3.3 Chemical Feed System
In designing the chemical feed system for phosphorus removal, the following points should be considered:

- The need to select chemical feed pumps, storage tanks and piping suitable for use with the chosen chemical(s);
- Selection of chemical feed equipment with the required range in capacity;
- The need for a standby chemical feed pump;
- Provision of flow pacing for chemical pumps proportional to sewage flow rates;
- Flexibility by providing a number of chemical application points;
- The need for protection of storage and piping from the effect of low temperatures;
- Selection of the proper chemical storage volume;
- The need for ventilation in chemical handling rooms; and
- Provision for containment of any chemical spills.

10.1.3.4 Chemical Feed Points
Selection of chemical feed points shall include consideration of the chemicals used in the process, necessary reaction times between chemical and polyelectrolyte additions, and the wastewater treatment processes and components utilized. Considerable flexibility in feed location should be provided, and multiple feed points are recommended.

10.1.3.5 Flash Mixing
Each chemical must be mixed rapidly and uniformly with the flow stream. Where separate mixing basins are provided, they should be equipped with mechanical mixing devices. The detention period should be at least 30 seconds.

10.1.3.6 Flocculation
The particle size of the precipitate formed by chemical treatment may be very small. Consideration should be given in the process design to the addition of synthetic polyelectrolytes to aid settling. The flocculation equipment should be adjustable in order to obtain optimum floc growth, control deposition of solids, and prevent floc destruction.

10.1.3.7 Liquid - Solids Separation
The velocity through pipes or conduits from flocculation basins to settling basins should not exceed 0.5 m/s in order to minimize floc destruction. Entrance works to settling basins should also be designed to minimize floc shear.

Settling basin design shall be in accordance with criteria outlined in Chapter 6. For design of the sludge handling system, special consideration should be given to the type and volume of sludge generated in the phosphorus removal process.

10.1.3.8 Filtration
Effluent filtration shall be considered where effluent phosphorus concentrations of less than 1 mg/ℓ must be achieved.

10.1.4 Feed Systems
10.1.4.1 Location
All liquid chemical mixing and feed installations should be installed on corrosion resistant pedestals and elevated above the highest liquid level anticipated during emergency conditions.
Lime feed equipment should be located so as to minimize the length of slurry conduits. All slurry conduits shall be accessible for cleaning.

10.1.4.2 Liquid Chemical Feed System
Liquid chemical feed pumps should be of the positive displacement type with variable feed rate. Pumps shall be selected to feed the full range of chemical quantities required for the phosphorus mass loading conditions anticipated with the largest unit out of service. Screens and valves shall be provided on the chemical feed pump suction lines.

An air break or anti-siphon device shall be provided where the chemical solution stream discharges to the transport water stream to prevent an induction effect resulting in overfeed.

Consideration shall be given to providing pacing equipment to optimize chemical feed rates.

10.1.4.3 Dry Chemical Feed System
Each dry chemical feeder shall be equipped with a dissolver which is capable of providing a minimum 5-minute retention at the maximum feed rate.

Polyelectrolyte feed installations should be equipped with two solution vessels and transfer piping for solution make-up and daily operation.

Make-up tanks shall be provided with an educator funnel or other appropriate arrangement for wetting the polymer during the preparation of the stock feed solution. Adequate mixing should be provided by a large-diameter low-speed mixer.

10.1.5 Storage Facilities
10.1.5.1 Size
Storage facilities shall be sufficient to ensure that an adequate supply of the chemical is available at all times. The exact size required will depend on the size of the shipment, length of delivery time, and process requirements. Storage for a minimum of 10-day supply should be provided.

10.1.5.2 Location
The liquid chemical storage tanks and tank fill connections shall be located within a containment structure having a capacity exceeding the total volume of all storage vessels. Valves on discharge lines shall be located adjacent to the storage tank and within the containment structure.

Auxiliary facilities, including pumps and controls, within the containment area shall be located above the highest anticipated liquid level. Containment areas shall be sloped to a sump area and shall not contain floor drains.

Bag storage should be located near the solution make-up point to avoid unnecessary transportation and housekeeping problems.

10.1.5.3 Accessories
Platforms, ladders, and railings should be provided as necessary to afford convenient and safe access to all filling connections, storage tank entries, and measuring devices.

Storage tanks shall have reasonable access provided to facilitate cleaning.
10.1.6 Other Requirements

10.1.6.1 Materials
All chemical feed equipment and storage facilities shall be constructed of materials resistant to chemical attack by all chemicals normally used for phosphorus treatment.

10.1.6.2 Temperature, Humidity and Dust Control
Precautions shall be taken to prevent chemical storage tanks and feed lines from reaching temperatures likely to result in freezing or chemical crystallization at the concentrations employed. A heated enclosure or insulation may be required. Consideration should be given to temperature, humidity and dust control in all chemical feed room areas.

10.1.6.3 Cleaning
Consideration shall be given to the accessibility of piping. Piping should be installed with plugged wyes, tees or crosses at changes in direction to facilitate cleaning.

10.1.6.4 Drains and Drawoff
Above-bottom drawoff from chemical storage or feed tanks shall be provided to avoid withdrawal of settled solids into the feed system. A bottom drain shall also be installed for periodic removal of accumulated settled solids. Provisions shall be made in the fill lines to prevent back siphonage of chemical tank contents.

10.1.7 Hazardous Chemical Handling
The requirements of Section 4.9.2 Hazardous Chemical Handling shall be met.

10.1.8 Sludge Handling

10.1.8.1 General
Consideration shall be given to the type and additional capacity of the sludge handling facilities needed when chemicals are added.

10.1.8.2 Dewatering
Design of dewatering systems should be based, where possible, on an analysis of the characteristics of the sludge to be handled. Consideration should be given to the ease of operation, effect of recycle streams generated, production rate, moisture content, de-water ability, final disposal, and operating cost.

10.2 Ammonia Removal

10.2.1 Breakpoint Chlorination

10.2.1.1 Applicability
The breakpoint chlorination process is best suited for removing relatively small quantities of ammonia, less than 5 mg/ℓ NH₃-N, and in situations whose low residuals of ammonia or total nitrogen are required.

10.2.1.2 Design Considerations

10.2.1.2.1 Mixing
The reaction between ammonia and chlorine occurs instantaneously, and no special design features are necessary except to provide for complete uniform mixing of the chlorine with the wastewater. Good mixing can best be accomplished with in-line mixers or backmixed reactors. A minimum contact time of 10 min is recommended.
10.2.1.2.2 Dosage
The sizing of the chlorine producing and/or feed device is dependent on the influent ammonia concentration to be treated as well as the degree of pre-treatment the wastewater has received. As the level of wastewater pre-treatment increases, the required amount of chlorine decreases and approaches the theoretical amount required to oxidize ammonia to nitrogen (7.6 mg Cl₂/l:1 mg NH₃-N/l). A stoichiometric ratio of Cl₂:NH₃-N = 7.6:1 will achieve a 95-99% conversion to N₂. Table 10.2 shows the quantities of chlorine required, based on operating experience as well as recommended design capabilities. These ratios are applied to the maximum anticipated influent ammonia concentration.

Table 10.2 Quantities of Chlorine Required for Three Wastewater Sources

<table>
<thead>
<tr>
<th>Wastewater Source</th>
<th>Experience</th>
<th>Recommended Design Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw</td>
<td>10:1</td>
<td>13:1</td>
</tr>
<tr>
<td>Secondary Effluent</td>
<td>9:1</td>
<td>12:1</td>
</tr>
<tr>
<td>Lime Settled and Filtered Secondary Effluent</td>
<td>8:1</td>
<td>10:1</td>
</tr>
</tbody>
</table>

10.2.1.2.3 Monitoring
If insufficient chlorine is available to reach the breakpoint, no nitrogen will be formed and the chloramines formed ultimately will revert back to ammonia. Provisions should be made to continuously monitor the waste, following chlorine addition, for free chlorine residual and to pace the chlorine feed device to maintain a set-point free chlorine residual.

10.2.1.2.4 Standby Equipment
The chemical feed assembly used for ammonia removal by breakpoint chlorination is considered in the preliminary design of the complete chlorination system, including those requirements for pre-chlorination, intermediate, and post-chlorination applications. Depending on the use of continuous chlorination at points within the system, some consideration is given to the use of standby chlorination equipment for the ammonia removal system. Reliability needs and maximum dosage requirements for the various application points shall also be examined when sizing the equipment.

10.2.1.2.5 pH Adjustment
Except for wastewaters having a high alkalinity or treatment systems employing lime coagulation prior to chlorination, provisions shall be made to feed an alkaline chemical to keep the pH of the wastewater in the proper range. A method for measuring and pacing the alkaline chemical feed pump to keep the pH in the desired range also should be provided.

10.2.2 Air Stripping
10.2.2.1 Applicability
The ammonia air stripping process is most economical if it is preceded by lime coagulation and settling. The ammonia stripping process can be used in a treatment system employing biological treatment or in a physical-chemical process. In most instances, more than 90 percent of the nitrogen in raw domestic wastewater is in the form of ammonia, and the ammonia stripping process can be readily applied to most physical-chemical
treatment systems. However, when the ammonia stripping process is to be preceded by a biological process, care must be exercised to ensure that nitrification does not occur in the secondary treatment process.

There is one serious limitation of the ammonia stripping process that should be recognized; namely, it is impossible to operate a stripping tower at air temperatures less than 0°C because of freezing within the tower. For treatment plants in cold weather locations, high pH stripping ponds may provide a simple solution to the problem of nitrogen removal.

10.2.2.2 Design Considerations
10.2.2.2.1 Tower Packing
Packings used in ammonia stripping towers may include 10 by 40 mm wood slats, plastic pipe, and a polypropylene grid. No specific packing spacing has been established. Generally, the individual splash should be spaced 40 to 100 mm horizontally and 50 to 100 mm vertically. A tighter spacing is used to achieve higher levels of ammonia removal and a more opening spacing is used where lower levels of ammonia removal are acceptable. Because of the large volume of air required, towers should be designed for a total air headloss of less than 50 to 75 mm of water. Packing depths of 6 to 7.5 m should be used to minimize power costs.

10.2.2.2.2 Hydraulic Loadings
Allowable hydraulic loading is dependent on the type and spacing of the individual splash bars. Although hydraulic loading rates used in ammonia stripping towers should range from 0.7 to 2.0 l/m².s removal efficiency is significantly decreased at loadings in excess of 1.3 l/m².s. The hydraulic loading rate should be such that a water droplet is formed at each individual splash bar as the liquid passes through the tower.

10.2.2.2.3 Air Requirements
Air requirements vary from 2200 to 3800 l/s for each l/s being treated in the tower. The 6 to 7.5 m of tower packing will normally produce a pressure drop of 15 to 40 mm of water.

10.2.2.2.4 Temperature
Air and liquid temperatures have a significant effect on the design of an ammonia stripping tower. Minimum operating air temperature and associated air density should be considered when sizing the fans to meet the desired air supply. Liquid temperature also affects the level of ammonia removal.

10.2.2.2.5 General Construction Features
The stripping tower may be either of the countercurrent (air inlet at base) or cross flow (air inlet along entire depth of fill) type. Generally, provisions should be made to have the capability to recycle tower effluent to increase the removal of ammonia nitrogen during cooler temperatures. Provisions shall be made in the design of the tower structure and fill so that the tower packing is readily accessible or removable for removing possible deposits of calcium carbonate.

10.2.2.2.6 Process Control
During periods of tower operation when temperature, air and wastewater flow rates, and scale formation are under control, the major process requirement necessary to insure satisfactory ammonia removal is to control the influent pH. pH control should be practiced in the upstream lime-coagulation-settling process. This basin should be monitored closely to prevent excessive carryover of lime solids into the ammonia stripping process. Normal lime-addition required to raise the pH to 11.5 is 300 to 400 mg/l (as CaO).
10.3 Biological Nutrient Removal

10.3.1 Biological Phosphorus Removal

A number of biological phosphorus removal processes exist that have been developed as alternatives to chemical treatment. Phosphorus is removed in biological treatment by means of incorporating orthophosphate, polyphosphate, and organically bound phosphorus into cell tissue. The key to the biological phosphorus removal is the exposure of the microorganisms to alternating anaerobic and aerobic conditions. Exposure to alternating conditions stresses the microorganisms so that their uptake of phosphorus is above normal levels. Phosphorus is not only used for cell maintenance, synthesis, and energy transport but is also stored for subsequent use by the microorganisms. The sludge containing the excess phosphorus is either wasted or removed through a sidestream to release the excess. The alternating exposure to anaerobic and aerobic conditions can be accomplished in the main biological treatment process, or "mainstream," or in the return sludge stream, or "sidestream".

10.3.1.1 Mainstream Phosphorus Removal (A/O Process)

The proprietary A/O process is a single sludge suspended-growth system that combines anaerobic stages and Oxic stages (aerobic) in sequence. Settled sludge is returned to the influent end of the reactor and mixed with the incoming wastewater. Under anaerobic conditions, the phosphorus contained in the wastewater and the recycled cell mass is released as soluble phosphates. Some BOD reduction also occurs in this stage. The phosphorus is then taken up by the cell mass in the aerobic zone. Phosphorus is removed from the liquid stream in the waste activated sludge. The concentration of phosphorus in the effluent is dependent mainly on the ratio of BOD to phosphorus of the wastewater treated.

10.3.1.2 Sidestream Phosphorus Removal (PhoStrip Process)

In the proprietary PhoStrip process, a portion of the return activated sludge from the biological treatment process is diverted to an anaerobic phosphorus stripping tank. The retention time in the stripping tank typically ranges from 8 to 12 hours. The phosphorus released in the stripping tank passes out of the tank in the supernatant, and the phosphorus-poor activated sludge is returned to the aeration tank. The phosphorus-rich supernatant is treated with lime or another coagulant in a separate tank and discharged to the primary sedimentation tanks or to a separate flocculation/clarification tank for solids separation. Phosphorus is removed from the system in the chemical precipitant. Conservatively designed PhoStrip and associated activated-sludge systems are capable of consistently producing an effluent with a total phosphorus content of less than 1.5 mg/l before filtration.

10.3.1.3 Design Criteria

Design criteria for biological Phosphorus removal is provided in Table 10.3.

Table 10.3 Design Criteria for Biological Phosphorus Removal

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Treatment Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A/O</td>
</tr>
<tr>
<td>Food/Microorganism Ratio (kg BOD₅/kg MLVSS.d)</td>
<td>0.2 - 0.7</td>
</tr>
<tr>
<td>Solids Retention Time (d)</td>
<td>2 - 25</td>
</tr>
<tr>
<td>MLSS (mg/ℓ)</td>
<td>2000 - 4000</td>
</tr>
<tr>
<td>Hydraulic Retention Time (hrs)</td>
<td></td>
</tr>
<tr>
<td>Anaerobic Zone</td>
<td>0.5 - 1.5</td>
</tr>
<tr>
<td>Aerobic Zone</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Return Activated Sludge (% of Influent Flowrate)</td>
<td>25 - 40</td>
</tr>
<tr>
<td>Stripper Underflow (% of Influent Flowrate)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
10.3.2 Biological Nitrogen Removal

The principal nitrogen conversion and removal processes are conversion of ammonia nitrogen to nitrate by biological nitrification and removal of nitrogen by biological nitrification/denitrification.

10.3.2.1 Nitrification

Biological nitrification consists of the conversion of ammonia nitrogen to nitrite followed by the conversion of nitrite to nitrate. This process does not increase the removal of nitrogen from the waste stream over that achieved by conventional biological treatment. The principal effect is that nitrified effluent can be denitrified biologically. To achieve nitrification, all that is required is the maintenance of conditions suitable for the growth of nitrifying organisms.

Nitrification is also used when treatment requirements call for oxidation of ammonia-nitrogen. Nitrification may be carried out in conjunction with secondary treatment or in a tertiary stage. In each case, either suspended growth or attached growth reactors can be used.

10.3.2.1.1 Design Criteria

Design criteria for nitrification is provided in Table 10.4.

Table 10.4 Design Criteria for Nitrification

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>Single Stage</th>
<th>Separate Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food/Microorganism Ratio (kg BOD₅/kg MLVSS.d)</td>
<td>0.12 - 0.25</td>
<td>0.05 - 0.2</td>
</tr>
<tr>
<td>Solids Retention Time (d)</td>
<td>8 - 20</td>
<td>15 - 100</td>
</tr>
<tr>
<td>MLSS (mg/ℓ)</td>
<td>1500 - 3500</td>
<td>1500 - 3500</td>
</tr>
<tr>
<td>Hydraulic Retention Time (hrs)</td>
<td>6 - 15</td>
<td>3 - 6</td>
</tr>
<tr>
<td>Return Activated Sludge (% of Influent Flowrate)</td>
<td>50 - 150</td>
<td>50 - 200</td>
</tr>
</tbody>
</table>

10.3.2.2 Combined Nitrification/Denitrification

The removal of nitrogen by biological nitrification/denitrification is a two-step process. In the first step, ammonia is converted aerobically to nitrate (NO₃-) (nitrification). In the second step, nitrates are converted to nitrogen gas (denitrification).

The removal of nitrate by conversion to nitrogen gas can be accomplished biologically under anoxic conditions. The carbon requirements may be provided by internal sources, such as wastewater and cell material, or by an external source.

10.3.2.2.1 Bardenpho Process (Four-Stage)

The four-stage proprietary Bardenpho process uses both the carbon in the untreated wastewater and carbon from endogenous decay to achieve denitrification. Separate reaction zones are used for carbon oxidation and anoxic denitrification. The wastewater initially enters an anoxic denitrification zone to which nitrified mixed liquor is recycled from a subsequent combined carbon oxidation nitrification compartment. The carbon present in the wastewater is used to denitrify the recycled nitrate. Because the organic loading is high, denitrification proceeds rapidly. The ammonia in the wastewater passes unchanged through the first anoxic basin to be nitrified in the first aeration basin. The nitrified mixed liquor from the first aeration basin passes into a second anoxic zone, where additional denitrification occurs using the endogenous carbon source. The second aerobic zone is relatively small and is used mainly to strip entrained nitrogen gas prior to clarification. Ammonia released from the sludge in the second anoxic zone is also nitrified in the last aerobic zone.
10.3.2.2 Oxidation Ditch
In an oxidation ditch, mixed liquor flows around a loop-type channel, driven and aerated by mechanical aeration devices. For nitrification/denitrification applications, an aerobic zone is established immediately downstream of the aerator, and an anoxic zone is created upstream of the aerator. By discharging the influent wastewater stream at the upstream end of the anoxic zone, some of the wastewater carbon source is used for denitrification. The effluent from the reactor is taken from the end of the aerobic zone for clarification. Because the system has only one anoxic zone, nitrogen removals are lower than those of the Bardenpho process.

10.3.3 Combined Biological Nitrogen and Phosphorus Removal
A number of biological processes have been developed for the combined removal of nitrogen and phosphorus. Many of these are proprietary and use a form of the activated sludge process but employ combinations of anaerobic, anoxic, and aerobic zones or compartments to accomplish nitrogen and phosphorus removal.

10.3.3.1 A2/O Process
The proprietary A2/O process provides an anoxic zone for denitrification with a detention period of approximately one hour. The anoxic zone is deficient in dissolved oxygen, but chemically bound oxygen in the form of nitrate or nitrite is introduced by recycling nitrified mixed liquor from the aerobic section. Effluent phosphorus concentrations of less than 2 mg/l can be expected without effluent filtration; with effluent filtration, effluent phosphorus concentrations may be less than 1.5 mg/l.

10.3.3.2 Bardenpho Process (5 Stage)
The proprietary Bardenpho process can be modified for combined nitrogen and phosphorus removal. The Phoredox modification of the Bardenpho process incorporates a fifth (anaerobic) stage for phosphorus removal. The five-stage system provides anaerobic, anoxic, and aerobic stages for phosphorus, nitrogen, and carbon removal. A second anoxic stage is provided for additional denitrification using nitrate produced in the aerobic stage as the electron acceptor and the endogenous organic carbon as the electron donor. The final aerobic stage is used to strip residual nitrogen gas from solution and to minimize the release of phosphorus in the final clarifier. Mixed liquor from the first aerobic zone is recycled to the anoxic zone.

10.3.3.3 UCT Process
The UCT (University of Cape Town) process eliminates return activated sludge to the anoxic stage and the internal recycle is from the anoxic stage to the anaerobic stage. By returning the activated sludge to the anoxic stage, the introduction of nitrate to the anaerobic stage is eliminated, thereby improving the release of phosphorus in the anaerobic stage. The internal recycle feature provides for increased denitrification in the anoxic stage. The mixed liquor from the anoxic stage contains substantial soluble BOD but little nitrate. The recycle of the anoxic mixed liquor provides for optimal conditions for fermentation uptake in the anaerobic stage.

10.3.3.4 Design Criteria
Design criteria for combined biological nitrogen and phosphorus removal is provided in Table 10.5.
Table 10.5 Design Criteria for Combined Biological Nitrogen and Phosphorus Removal

<table>
<thead>
<tr>
<th>Design Parameter</th>
<th>A²/O</th>
<th>Bardenpho (5 Stage)</th>
<th>UCT</th>
<th>SBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food/Microorganism Ratio (kg BOD₅/kg MLVSS.d)</td>
<td>0.15 - 0.25</td>
<td>0.1 - 0.2</td>
<td>0.1 - 0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Solids Retention Time (d)</td>
<td>5 - 25</td>
<td>10 - 20</td>
<td>10 - 25</td>
<td>20-40</td>
</tr>
<tr>
<td>MLSS (mg/l)</td>
<td>3000 - 4000</td>
<td>3000 - 4000</td>
<td>3000 - 4000</td>
<td>3000 - 4000</td>
</tr>
<tr>
<td>Hydraulic Retention Time (hrs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic Zone</td>
<td>0.5 - 1.5</td>
<td>0.5 – 1.5</td>
<td>1 - 2</td>
<td>Batch Times</td>
</tr>
<tr>
<td>Anoxic Zone - 1</td>
<td>0.5 - 1.0</td>
<td>1 - 3</td>
<td>2 - 4</td>
<td>1.5 - 3</td>
</tr>
<tr>
<td>Aerobic Zone - 1</td>
<td>4 - 8</td>
<td>4 - 12</td>
<td>4 - 12</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Anoxic Zone - 2</td>
<td>0.5 - 1</td>
<td>2 - 4</td>
<td></td>
<td>2 - 4</td>
</tr>
<tr>
<td>Aerobic Zone - 2</td>
<td></td>
<td>0.5 - 1</td>
<td></td>
<td>3.5 - 10</td>
</tr>
<tr>
<td>Settle/Decant</td>
<td></td>
<td>Total</td>
<td>5 - 10.5</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>8 – 21.5</td>
<td>7 - 18</td>
<td></td>
</tr>
<tr>
<td>Return Activated Sludge (% of Influent Flowrate)</td>
<td>25 - 100</td>
<td>50 - 100</td>
<td>80 - 100</td>
<td>---</td>
</tr>
<tr>
<td>Internal Recycle (% of Influent Flowrate)</td>
<td>100 - 400</td>
<td>200 - 400</td>
<td>~200-400 (anoxic) & 100-300 (aerobic)</td>
<td>--</td>
</tr>
</tbody>
</table>

10.3.4 Sequencing Batch Reactor (SBR)

The SBR can be operated to achieve any combination of carbon oxidation, nitrogen reduction, and phosphorus removal. Reduction of these constituents can be accomplished with or without chemical addition by changing the operation of the reactor. Phosphorus can be removed by coagulant addition or biologically without coagulant addition. By modifying the reaction times, nitrification or nitrogen removal can also be accomplished. Overall cycle time may vary from 3 to 24 hours. A carbon source in the anoxic phase is required to support denitrification—either an external source or endogenous respiration of the existing biomass.

10.3.5 Detailed Design Manuals

The following sources contain detailed design information for biological nutrient removal:
- Environment Canada: *Treatment Processes for the Removal of Ammonia from Municipal Wastewater*, 2003

10.4 Effluent Filtration

10.4.1 General

10.4.1.1 Applicability

Effluent filtration is generally necessary when effluent quality better than 15 mg/l BOD₅, 15 mg/l suspended solids and 1.0 mg/l phosphorus is required.
Where effluent suspended solids requirements are less than 10 mg/L, where secondary effluent quality can be expected to fluctuate significantly, or where filters follow a treatment process where significant amounts of algae will be present, a pre-treatment process such as chemical coagulation and sedimentation or other acceptable process should precede the filter units.

10.4.1.2 Design Considerations
Factors to consider when choosing between the different filtration systems which are available, include the following:

- The installed capital and expected operating and maintenance costs;
- The energy requirements of the systems (head requirements);
- The media types and sizes and expected solids capacities and treatment efficiencies of the system; and
- The backwashing systems, including type, backwash rate, backwash volume, effect on sewage works, etc.

Care should be given in the selection of pumping equipment ahead of filter units to minimize shearing of floc particles. Consideration should be given in the plant design to providing flow-equalization facilities to moderate filter influent quality and quantity.

10.4.2 Location of Filter Systems
Effluent filtration should precede the chlorine contact chamber to minimize chlorine usage, to allow more effective disinfection and to minimize the production of chloro-organic compounds.

To allow excessive biological growths and grease accumulations to be periodically removed from the filter media, a chlorine application point should be provided upstream of the filtration system (chlorine would only be dosed as necessary at this location with de-chlorination used as required to ensure protection of aquatic life.)

10.4.3 Number of Units
Total filter area shall be provided in 2 or more units, and the filtration rate shall be calculated on the total available filter area with one unit out of service.

10.4.4 Filter Types
Filters may be of the gravity type or pressure type. Pressure filters shall be provided with ready and convenient access to the media for treatment or cleaning. Where greases or similar solids, which result in filter plugging are expected, filters should be of the gravity type.

10.4.5 Filtration Rates
10.4.5.1 Hydraulic Loading Rate
Filtration rates at peak hourly sewage flow rates, including backwash flows, should not exceed 2.1 L/m²·s for shallow bed single media systems (if raw sewage flow equalization is provided, lower peak filtration rates should be used in order to avoid under-sizing of the filter).

Filtration rates at peak hourly sewage flow rates, including backwash flows, should not exceed 3.3 L/m²·s for deep bed filters (if raw sewage flow equalization is provided, lower peak filtration rates should be used in order to avoid undersizing of the filter). The manufacturer’s recommended maximum filtration rate should, however, not be exceeded.
10.4.5.2 Organic Loading Rate
Peak solids loading rate should not exceed 50 mg/m²·s for shallow bed filters and 80 mg/m²·s for deep bed filters (if raw sewage flow equalization is provided, lower peak solids loading rates should be used in order to avoid undersizing of the filter).

10.4.6 Backwash

10.4.6.1 Backwash Rate
The backwash rate shall be adequate to fluidize and expand each media layer a minimum of 20 percent based on the media selected. The backwash system shall be capable of providing a variable backwash rate so that the maximum rate is at least 14 l/m²·s and a minimum backwash period of 10 minutes.

10.4.6.2 Backwash
Pumps for backwashing filter units shall be sized and interconnected to provide the required rate to any filter with the largest pump out of service. Filtered water should be used as the source of backwash water. Waste filter backwash shall be adequately treated.

Air scour or mechanical agitation systems to improve backwash effectiveness are recommended.

If instantaneous backwash rates represent more than 15 percent of the average daily design flow rate of the plant, a backwash holding tank should be provided to equalize the flow of backwash water to the plant.

10.4.7 Filter Media

10.4.7.1 Selection
Selection of proper media size will depend on the filtration rate selected, the type of treatment provided prior to filtration, filter configuration, and effluent quality objectives. In dual or multi-media filters, media size selection must consider compatibility among media.

10.4.7.2 Media Specifications
Table 10.6 provides minimum media depths and the normally acceptable range of media sizes. The designer has the responsibility for selection of media to meet specific conditions and treatment requirements relative to the project under consideration.

Table 10.6 Media Depths and Sizes

<table>
<thead>
<tr>
<th></th>
<th>(Minimum Depth)</th>
<th>(Effective Size)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single Media</td>
<td>2 Media</td>
</tr>
<tr>
<td>Anthracite</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>50 cm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 - 2.0 mm</td>
</tr>
<tr>
<td>Sand</td>
<td>120 cm</td>
<td>30 cm</td>
</tr>
<tr>
<td></td>
<td>1.0 - 4.0 mm</td>
<td>0.5 - 1.0 mm</td>
</tr>
<tr>
<td>Garnet or Similar Material</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uniformity Coefficient shall be 1.7 or less
10.4.8 Filter Appurtenances
The filters shall be equipped with washwater troughs, surface wash or air scouring equipment, means of measurement and positive control of the backwash rate, equipment for measuring filter head loss, positive means of shutting off flow to a filter being backwashed, and filter influent and effluent sampling points. If automatic controls are provided, there shall be a manual override for operating equipment, including each individual valve essential to the filter operation. The underdrain system shall be designed for uniform distribution of backwash water (and air, if provided) without danger of clogging from solids in the backwash water. Provisions shall be made to allow periodic chlorination of the filter influent or backwash water to control slime growths. If air is to be used for filter backwash, separate backwash blowers shall be provided.

10.4.9 Reliability
Each filter unit shall be designed and installed so that there is ready and convenient access to all components and the media surface for inspection and maintenance without taking other units out of service. The need for housing of filter units shall depend on expected extreme climatic conditions at the treatment plant site. As a minimum, all controls shall be enclosed. The structure housing filter controls and equipment shall be provided with adequate heating and ventilation equipment to minimize problems with excess humidity.

10.4.10 Backwash Surge Control
The rate of return of waste filter backwash water to treatment units should be controlled such that the rate does not exceed 15 percent of the design average daily flow rate to the treatment units. The hydraulic and organic load from waste backwash water shall be considered in the overall design of the treatment plant. Surge tanks shall have a minimum capacity of two backwash volumes, although additional capacity should be considered to allow for operational flexibility. Where waste backwash water is returned for treatment by pumping, adequate pumping capacity shall be provided with the largest unit out of service.

10.4.11 Backwash Water Storage
Total backwash water storage capacity provided in an effluent clearwell or other unit shall equal or exceed the volume required for two complete backwash cycles.

10.4.12 Proprietary Equipment
Where proprietary filtration equipment not conforming to the preceding requirements is proposed, data which supports the capability of the equipment to meet effluent requirements under design conditions shall be provided. Such equipment will be reviewed on a case-by-case basis at the discretion of the regulatory agencies.

10.5 Microscreening
10.5.1 General
10.5.1.1 Applicability
Microscreening units may be used following a biological treatment process for the removal of residual suspended solids. Selection of this unit process should consider final effluent requirements, the preceding biological treatment process, and anticipated consistency of the biological process to provide a high-quality effluent.

10.5.1.2 Design Considerations
Pilot plant testing on existing secondary effluent is encouraged. Where pilot studies so indicate, where microscreens follow trickling filters or ponds, or where effluent suspended solids requirements are less than 10 mg/l, a pre-treatment process such as chemical coagulation and sedimentation shall be provided. Care should be taken in the selection of pumping equipment ahead of microscreens to minimize shearing of floc particles.
The process design shall include flow equalization facilities to moderate microscreen influent quality and quantity.

10.5.2 Screen Material
The microfabric shall be a material demonstrated to be durable through long-term performance data. The aperture size must be selected considering required removal efficiencies, normally ranging from 20 to 35 microns. The use of pilot plant testing for aperture size selection is recommended.

10.5.3 Screening Rate
The screening rate shall be selected to be compatible with available pilot plant test results and selected screen aperture size, but shall not exceed 3.4 l/m²·s of effective screen area based on the maximum hydraulic flow rate applied to the units. The effective screen area shall be considered as the submerged screen surface area less the area of screen blocked by structural supports and fasteners. The screening rate shall be that applied to the units with one unit out of service.

10.5.4 Backwash
All waste backwash water generated by the microscreening operation shall be recycled for treatment. The backwash volume and pressure shall be adequate to assure maintenance of fabric cleanliness and flow capacity. Equipment for backwash of at least 1.65 l/m·s of screen length and 4.22 kgf/cm², respectively, shall be provided. Backwash water shall be supplied continuously by multiple pumps, including one standby, and should be obtained from microscreened effluent. The rate of return of waste backwash water to treatment units shall be controlled such that the rate does not exceed 15 percent of the design average daily flow rate to the treatment plant. The hydraulic and organic load from waste backwash water shall be considered in the overall design of the treatment plant. Where waste backwash is returned for treatment by pumping, adequate pumping capacity shall be provided with the largest unit out of service. Provisions should be made for measuring backwash flow.

10.5.5 Appurtenances
Each microscreen unit shall be provided with automatic drum speed controls with provisions for manual override, a bypass weir with an alarm for use when the screen becomes blinded to prevent excessive head development, and means for dewatering the unit for inspection and maintenance. Bypassed flows must be segregated from water used for backwashing. Equipment for control of biological slime growths shall be provided. The use of chlorine should be restricted to those installations where the screen material is not subject to damage by the chlorine.

10.5.6 Reliability
A minimum of two microscreen units shall be provided, each unit being capable of independent operation. A supply of critical spare parts shall be provided and maintained. All units and controls shall be enclosed in a heated and ventilated structure with adequate working space to provide for ease of maintenance.

10.6 Activated Carbon Adsorption

10.6.1 Applicability
In tertiary treatment, the role of activated carbon is to remove the relatively small quantities of refractory organics, as well as inorganic compounds such as nitrogen, sulphides, and heavy metals, remaining in an otherwise well-treated wastewater.

Activated carbon may also be used to remove soluble organics following chemical-physical treatment.
10.6.2 Design Considerations

The usefulness and efficiency of carbon adsorption for wastewater treatment depends on the quality and quantity of the delivered wastewater. To be fully effective, the carbon unit should receive an effluent of uniform quality, without surges in the flow. Other wastewater qualities of concern include suspended solids, oxygen demand, other organics such as methylene blue active substance (MBAS) or phenol, and dissolved oxygen. Environmental parameters of importance include pH and temperature. Consideration also should be given to the type of activated carbon available. Activated carbons produced from different base materials and by different activation processes will have varying adsorptive capacities. Some factors influencing adsorption at the carbon/liquid interface are:

- Attraction of carbon for solute;
- Attraction of carbon for solvent;
- Solubilizing power of solvent or solute;
- Association;
- Ionization;
- Effect of solvent on orientation at interface;
- Competition for interface in presence of multiple solutes;
- Adsorption;
- Molecular size of molecules in the system;
- Pore size distribution in carbon;
- Surface area of carbon; and
- Concentration of constituents.

There are several different activated carbon contactor systems that can be selected. The carbon columns can be either of the pressure or gravity type.

10.6.3 Unit Sizing

10.6.3.1 Contact Time

The contact time shall be calculated on the basis of the volume of the column occupied by the activated carbon. Generally, carbon contact times of 15 to 35 min are used depending on the application, the wastewater characteristics, and the desired effluent quality. For tertiary treatment applications, carbon contact times of 15 to 20 min should be used where the desired effluent quality is a COD of 10 to 20 mg/l, and 30 to 35 min when the desired effluent COD is 5 to 15 mg/l. For chemical-physical treatment plants, carbon contact times of 20 to 35 min should be used, with a contact time of 30 min being typical.

10.6.3.2 Hydraulic Loading Rate

Hydraulic loading rates of 2.5 to 7.0 l/m²·s of cross section of the bed shall be used for upflow carbon columns. For downflow carbon columns, hydraulic loading rates of 2.0 to 3.3 l/m²·s are used. Actual operating pressure seldom rises above 7 kN/m², for each 0.3 m of bed depth.

10.6.3.3 Depth of Bed

The depth of bed will vary considerably, depending primarily on carbon contact time, and may be from 3 to 12 m. A minimum carbon depth of 3 m is recommended. Typical total carbon depths range from 4.5 to 6 m. Freeboard has to be added to the carbon depth to allow an expansion of 10 to 50 percent for the carbon bed during backwash or for expanded bed operation. Carbon particle size and water temperature will determine the required quantity of backwash water to attain the desired level of bed expansion.
10.6.3.4 Number of Units
A minimum of two, parallel carbon contactor units are recommended for any size plant. A sufficient number of contactors should be provided to insure an adequate carbon contact time to maintain effluent quality while one column is off line during removal of spent carbon for regeneration or for maintenance.

10.6.4 Backwashing
The rate and frequency of backwash is dependent on hydraulic loading, the nature and concentration of suspended solids in the wastewater, the carbon particle size, and the method of contacting. Backwash frequency can be prescribed arbitrarily (each day at a specified time), or by operating criteria, (headloss or turbidity). Duration of backwash may be 10 to 15 min.

The normal quantity of backwash water employed is less than 5 percent of the product water for a 0.8 m deep filter and 10 to 20 percent for a 4.5 m filter.

Recommended backwash flow rates for granular carbons of 8 x 12 or 12 x 30 mesh are 8 to 14 l/m²·s.

10.6.5 Valve and Pipe Requirements
Upflow units shall be piped to operate either as upflow or downflow units as well as being capable of being backwashed. Downflow units shall be piped to operate as downflow and in series. Each column must be valved to be backwashed individually. Furthermore, downflow series contactors should be valved and piped so that the respective position(s) of the individual contactors can be interchanged.

10.6.6 Instrumentation
The individual carbon columns should be equipped with flow and headloss measuring devices.

10.6.7 Hydrogen Sulphide Control
Methods that can be incorporated into the plant design to cope with hydrogen sulphide production include:
- Providing upstream biological treatment to satisfy as much of the biological oxygen demand as possible prior to carbon treatment;
- Reducing detention time in the carbon columns based on dissolved oxygen concentrations of the effluent;
- Backwashing the columns at more frequent intervals;
- Chlorinating carbon column influent; and
- In upflow expanded beds, the introducing of an oxygen source, such as air or hydrogen peroxide, to keep the columns aerobic.

10.6.8 Carbon Transport
Provisions must be made to remove spent carbon from the carbon contactors. It is important to obtain a uniform withdrawal of carbon over the entire horizontal surface area of the carbon bed. Care must be taken to ensure that gravel or stone supporting media used in downflow contactors does not enter the carbon transport system.

Activated carbon shall be transported hydraulically. Carbon slurries can be transported using water or air pressure, centrifugal or diaphragm pumps, or eductors. The type of motive equipment selected requires a balance of owner preference, column control capabilities, capital and maintenance costs, and pumping head requirements.

Carbon slurry piping systems shall be designed to provide approximately 8 L of transport water for each kg of carbon removed. Pipeline velocities of 0.9 to 1.5 m/s are recommended.
Long-radius elbows or tees and crosses with cleanouts should be used at points of pipe direction change. Valves should be of the ball or plug type. No valves should be installed in the slurry piping system for the purpose of throttling flows.

10.6.9 Carbon Regeneration

10.6.9.1 Quantities of Spent Carbon

The carbon dose used to size the regeneration facilities depends on the strength of the wastewater applied to the carbon and the required effluent quality. Typical carbon dosages that might be anticipated for municipal wastewaters are shown in Table 10.7.

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>Typical Carbon Dosage Required Per m3 of Column Throughput (g/m3)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coagulated, Settled and Filtered Activated Sludge Effluent</td>
<td>35 - 70</td>
</tr>
<tr>
<td>Filtered Secondary Effluent</td>
<td>70 - 100</td>
</tr>
<tr>
<td>Coagulated, Settled, and Filtered Raw Wastewater (Physical - Chemical)</td>
<td>100 - 300</td>
</tr>
</tbody>
</table>

*Loss of carbon during each regeneration cycle typically will be 5 to 10%. Make-up carbon is based on carbon dosage and the quality of the regenerated carbon.

10.6.9.2 Carbon Dewatering

Dewatering of the spent carbon slurry prior to thermal regeneration may be accomplished in spent carbon drain bins. The drainage bins shall be equipped with screens to allow the transport of water to flow from the carbon. Two drain bins shall be provided.

Dewatering screws may also be used to dewater the activated carbon. A bin must be included in the system to provide a continuous supply of carbon to the screw, as well as maintain a positive seal on the furnace.

10.6.9.3 Regeneration Furnace

Partially dewatered carbon may be fed to the regeneration furnace with a screw conveyor equipped with a variable speed drive to control the rate of carbon feed precisely.

The theoretical furnace capacity is determined by the anticipated carbon dosage. An allowance for furnace downtime on the order of 40 percent should be added to the theoretical capacity.

Based on the experience gained from two full-scale facilities, provisions should be made to add approximately 1 kg of steam per kg of carbon regenerated. Fuel requirements for the carbon regeneration furnace are 7000 kJ/kg of carbon when regenerating spent carbon on tertiary and secondary effluent applications. To this value, the energy requirements for steam and an afterburner, if required, must be added.

The furnace shall be designed to control the carbon feed rate, rabble arm speed, and hearth temperatures. The off-gases from the furnace must be within acceptable air pollution standards. Air pollution control equipment shall be designed as an integral part of the furnace and include a scrubber for removing carbon fines and an afterburner for controlling odours.
10.7 Constructed Wetlands

10.7.1 General

Constructed wetlands are inundated land areas with water depths typically less than 0.6 m that support the growth of emergent plants such as cattail, bulrush, reeds, and sedges. The vegetation provides surface for the attachment of bacterial films, aids in the filtration and adsorption of wastewater constituents, transfers oxygen into the water column, and controls the growth of algae by restricting the penetration of sunlight.

Although plant uptake is an important consideration in contaminant removal, particularly nutrient removal, it is only one of many active removal mechanisms in the wetland environment. Removal mechanisms have been classified as physical, chemical and biological and are operative in the water column, the humus and soil column beneath the growing plants, and at the interface between the water and soil columns. Because most of the biological transformations take place on or near a surface to which bacteria are attached, the presence of vegetation and humus is very important. Wetland systems are designed to provide maximum production of humus material through profuse plant growth and organic matter decomposition.

10.7.2 Types

Wastewater treatment systems using constructed wetlands have been categorized as either free water surface (FWS) or subsurface flow (SF) types:

- Free Water Surface Wetlands (FWS);
- Subsurface Flow Wetland (SF)

An FWS system consists of basins or channels with a natural or constructed subsurface barrier to minimize seepage. Emergent vegetation is grown and wastewater is treated as it flows through the vegetation and plant litter. FWS wetlands are typically long and narrow to minimize short-circuiting.

A SF wetland system consists of channels or basins that contain gravel or sand media which will support the growth of emergent vegetation. The bed of impermeable material is sloped typically between 0 and 2 percent. Wastewater flows horizontally through the root zone of the wetland plants about 100 to 150 mm below the gravel surface. Treated effluent is collected in an outlet channel or pipe.

10.7.3 Site Evaluation

Site characteristics that must be considered in wetland system design include topography, soil characteristics, existing land use, flood hazard, and climate.

Topography

Level to slightly sloping, uniform topography is preferred for wetland sites because free water systems (FWS) are generally designed with level basins or channels, and subsurface flow systems (SF) are normally designed and constructed with slopes of 1 percent or slightly more. Although basins may be constructed on steeper sloping or uneven sites, the amount of earthwork required will affect the cost of the system. Thus, slope gradients should be less than 5 percent.

Soil Characteristics

Sites with slowly permeable (< 1.4 x 10-4 cm/sec) surface soils or subsurface layers are most desirable for wetland systems because the objective is to treat the wastewater in the water layer above the soil profile. Therefore, percolation losses through the soil profile should be minimized. As with overland-flow systems, the surface soil will tend to seal with time due to deposition of solids and growth of bacterial slimes. Permeabilities of native soils may be purposely reduced by compacting during construction. Sites with high permeability soils...
may be used for small systems by constructing basins with clay or artificial liners. The depth of soil to groundwater should be a minimum of 0.3 - 0.6 m to allow sufficient distance for treatment of any percolate entering the groundwater.

Flood Hazard
Wetland sites should be located outside of flood plains, or protection from flooding should be provided.

Existing Land Use
Open space or agricultural lands, particularly those near existing natural wetlands, are preferred for wetland sites. Constructed wetlands can enhance existing natural wetlands by providing additional wildlife habitat and, in some cases, by providing a more consistent water supply.

Climate
The use of wetland systems in cold climates is possible. Because the principle treatment systems are biological, treatment performance is strongly temperature sensitive. Storage will be required where treatment objectives cannot be met due to low temperatures. Climate change conditions should be considered for forecasted low temperatures.

10.7.4 Preapplication Treatment
Artificial wetlands may be designed to accept wastewater with minimal (coarse screening and comminution) pre-treatment. However, the level of pre-treatment will influence the quality of the final effluent and therefore overall treatment objectives must be considered. Since there is no permanent escape mechanism for phosphorus within the wetland, phosphorus reduction by chemical addition is also recommended as a pre-treatment step to ensure continued satisfactory phosphorus removal within the marsh.

10.7.5 Vegetation Selection and Management
The plants most frequently used in constructed wetlands include cattails, reeds, rushes, bulrushes, and sedges. All of these plants are ubiquitous and tolerate freezing conditions. The important characteristics of the plants related to design are the optimum depth of water for FWS systems and the depth of rhizome and root systems for SF systems. Cattails tend to dominate in water depths over 0.15 m. Bulrushes grow well at depths of 0.05 - 0.25 m. Reeds grow along the shoreline and in water up to 1.5 m deep, but are poor competitors in shallow waters. Sedges normally occur along the shoreline and in shallower water than bulrushes. Cattail rhizomes and roots extend to a depth of approximately 0.3 m, whereas reeds extend to more than 0.6 m and bulrushes to more than 0.75 m. Reeds and bulrushes are normally selected for SF systems because the depth of rhizome penetration allows for the use of deeper basins.

Harvesting of wetland vegetation is generally not required, especially for SF systems. However dry grasses in FWS systems are burned off periodically to maintain free-flow conditions and to prevent channeling of the flow. Removal of the plant biomass for the purpose of nutrient removal is normally not practical.

10.7.6 Design Parameters

10.7.6.1 Detention Time

Free Water Surface Wetlands (FWS)
The relationship between BOD removal and detention times for FWS is represented by the equation:

\[C_e = C_0 \exp(-kTt) \]
Where:

\[C_e = \text{Effluent BOD, mg/l} \]

\[C_o = \text{Influent BOD, mg/l} \]

\[k_T = \text{Temperature dependent rate constant, d}^{-1} \]

\[k_T = k_{20} \times 1.06^{(T-20)} \]

\[k_{20} = \text{d}^{-1} \]

\[T = \text{Average monthly water temperature, °C} \]

\[t = \text{Average detention time, d} \]

\[= A_s c y / Q_A \]

\[A_s = \text{Design surface area of wetland, m}^2 \]

\[c = \text{Fraction of cross-sectional area not used by plants} \]

\[y = \text{Depth of water in the wetland, m} \]

\[Q_A = \text{Average flow through the wetland } [(Q_{in} + Q_{out})/2], \text{ m}^3/\text{d} \]

Subsurface Flow Wetlands (SF)

The relationship between BOD removal and detention times for SF is represented by the equation:

\[C_e = C_o \exp(-k_T t) \]

Where:

\[C_e = \text{effluent BOD, mg/l} \]

\[C_o = \text{Influent BOD, mg/l} \]

\[k_T = \text{Temperature dependent rate constant, d}^{-1} \]

\[k_T = k_{20} \times 1.06^{(T-20)} \]

\[k_{20} = \text{d}^{-1} \]

\[t' = A_s c y / Q_A \]

\[A_s = \text{Design surface area of wetland, m}^2 \]

\[c = \text{Porosity of basin medium (See Table 10.8 for media characteristics)} \]

\[y = \text{Depth of water in the wetland, m} \]

\[Q_A = \text{Average flow through the wetland } [(Q_{in} + Q_{out})/2], \text{ m}^3/\text{d} \]

Note: See Table 10.9 for typical parameters for FWS and SF wetlands

10.7.6.2 Water Depth

For FWS, the design water depth depends on the optimum depth for the selected vegetation. In cold climates, the operating depth is normally increased in the winter to allow for ice formation on the surface and to provide the increased detention time required at colder temperatures. Systems should be designed with an outlet structure that allows for varied operating depths.

The design depth of SF systems is controlled by the depth of penetration of the plant rhizomes and roots because the plants supply oxygen to the water through the root/rhizome system.

See Table 9.9 for typical FWS and SF water depths.
10.7.6.3 Hydraulics and Hydrological Considerations

Manning’s equation is generally accepted as a model for the flow of water through FWS wetland systems. Flow velocity depends on depth of the water, hydraulic gradient (i.e., slope of the water surface), and the resistance to flow.

\[v = \frac{(1/n)}{(y^{2/3})(s^{1/2})} \]

Where:
- \(v \) = Flow velocity, m/s
- \(n \) = Manning’s coefficient, \(s/m^{1/3} \)
- \(s \) = Hydraulic gradient, \(m/m \)
- \(y \) = Water depth, m

The relationship between Manning’s n coefficient and the resistance factor is defined as:

\[n = \frac{a}{y^{1/2}} \]

Where:
- \(a \) = is the resistance factor, \(s.m^{1/6} \)

Reed et al. (1995) presented the following values for \(a \) in FWS wetlands.

Sparse, low standing vegetation, \(y > 0.4 \) m:
- \(a = 0.4 \) s.m\(^{1/6}\)

Moderately dense vegetation, \(y \geq 0.3 \) m:
- \(a = 1.6 \) s.m\(^{1/6}\)

Very dense and litter, \(y < 0.3 \) m
- \(a = 6.4 \) s.m\(^{1/6}\)

The aspect ratio (i.e. length: width ratio) selected for a FWS wetland can influence the hydraulic regime because resistance to flow increases as length increases. Reed et al. (1995) developed a model that can estimate the maximum desirable length of an FWS wetland channel.

\[L = \left[(A_s)(y^{2.667})(m^{0.5})(86400)/(a)(Q_{\lambda})^{0.667} \right]^{0.667} \]

Where:
- \(L \) = Maximum length of wetland cell, m;
- \(A_s \) = Design surface area of wetland, m\(^2\);
- \(y \) = Depth of water in the wetland, m;
- \(m \) = Portion of available hydraulic gradient used to provide the necessary head, percent as a decimal;
- \(a \) = Resistance factor, \(s.m^{1/6} \)
- \(Q_{\lambda} \) = Average flow through the wetland \([(Q_{in} + Q_{out})/2] \), m\(^3\)/d

An initial \(m \) value between 10 and 20% is suggested for design to ensure a future reserve as a safety factor. In the general case this model produces an aspect ratio of 3:1 or less. Using the average flow \(Q_{\lambda} \) in the model compensates for the influence of precipitation, evapotranspiration, and seepage on the flow through the wetland. The design surface area \(A_s \) is the bottom area of the wetland.

Darcy’s Law describes the flow regime in a porous media and is generally accepted for the hydraulic design of SF wetlands.
Because:
\[v = k_s s = Q_A/A_c y \]

Therefore:
\[Q_A = k_s A_c s \]

Where:
- \(Q_A \) = Average flow through the SF wetland, \(m^3/d \)
- \(K_s \) = Hydraulic conductivity of a unit area of the wetland perpendicular to the flow direction, \(m^3/m^2/d \)
- \(A_c \) = Total cross-sectional area perpendicular to flow, \(m^2 \)
- \(s \) = Hydraulic gradient or slope of the water surface in the wetland, \(m/m \)
- \(V \) = Darcy’s velocity, the apparent flow velocity through the-cross sectional area.

The aspect ratio (i.e. length: width ratio) selected for a SF wetland can influence the hydraulic regime because resistance to flow increases as length increases. Reed et al. (1995) developed a model that can estimate the maximum desirable length of an SF wetland channel.

\[W = (1/y)\left[\frac{(Q_A)(A_s)}{(m)(k_s)}\right]^{0.5} \]

Where:
- \(W \) = Maximum width of the SF wetland cell, \(m \)
- \(A_s \) = Design surface area of wetland, \(m^2 \)
- \(y \) = Depth of water in the wetland, \(m \)
- \(m \) = Portion of available hydraulic gradient used to provide the necessary head, percent as a decimal
- \(k_s \) = Hydraulic conductivity of the media used, \(m^3/m^2/d \)
- \(Q_A \) = Average flow through the wetland, \(m^3/d \)
 \[= \frac{(Q_{IN} + Q_{OUT})}{2} \]

The \(m \) value in the equation above ranges from 5 to 20% of the potential head available. For large projects, the hydraulic conductivity \(k_s \) should be directly measured with a sample of the media to be used. When using the maximum width equation, not more than one-third of the effective hydraulic conductivity \(k_s \) should be used in the calculation, and \(m \) value should not exceed 20% to ensure a large safety factor against potential clogging and other contingencies not defined at the time of design. Table 10.8 gives the typical characteristics for media in SF wetlands.

<table>
<thead>
<tr>
<th>Media type</th>
<th>(D_{10}) Effective size, mm</th>
<th>Porosity, (\alpha)</th>
<th>(K_{uv}, m^3/m^2 d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Sand</td>
<td>2</td>
<td>0.28-0.32</td>
<td>100-1000</td>
</tr>
<tr>
<td>Gravelly sand</td>
<td>8</td>
<td>0.30 - 0.35</td>
<td>500-5000</td>
</tr>
<tr>
<td>Fine gravel</td>
<td>16</td>
<td>0.35 - 0.38</td>
<td>1000-10,000</td>
</tr>
<tr>
<td>Medium gravel</td>
<td>32</td>
<td>0.36 - 0.40</td>
<td>10,000-50,000</td>
</tr>
<tr>
<td>Coarse rock</td>
<td>128</td>
<td>0.38 – 0.45</td>
<td>50,000-250,000</td>
</tr>
</tbody>
</table>

Table 10.9 provides typical parameters for FWS and SF Wetlands.
Table 10.9 Typical Parameters for FWS and SF Wetlands

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity ((\alpha))</td>
<td>0.65 to 0.75</td>
<td>0.35 to 0.45</td>
</tr>
<tr>
<td>Depth (y), m</td>
<td>0.15 to 0.60</td>
<td>0.30 to 0.60</td>
</tr>
<tr>
<td>Fraction of cross-sectional area not used by plants (c)</td>
<td>0.65 to 0.75</td>
<td>0.65 to 0.75</td>
</tr>
</tbody>
</table>

BOD\(_5\) Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{20}), d(^{-1})</td>
<td>0.678</td>
<td>1.104</td>
</tr>
<tr>
<td>(\theta)</td>
<td>1.06</td>
<td>1.06</td>
</tr>
<tr>
<td>Background Concentration, mg/l</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

TSS Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_e/C_o)</td>
<td>([0.1139 + 0.00213(HLR)])</td>
<td>([0.1058 + 0.0011(HLR)])</td>
</tr>
<tr>
<td>HLR = hydraulic loading rate, mm/d x 0.1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TSS removal does not depend on temperature</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Background Concentration, mg/l</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Ammonia Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 0(^\circ)C, (K_{f}(d^{-1}))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>At 1(^\circ)C, (K_{20})</td>
<td>0.2187</td>
<td>((K_{NH})((\theta))(^{T-20}))</td>
</tr>
<tr>
<td>(\theta)</td>
<td>1.048</td>
<td>1.048</td>
</tr>
<tr>
<td>(K_{NH}) = rate constant 20(^\circ)C for SF wetlands, d(^{-1})((rz) = portion of SF bed occupied by plant roots, % as a decimal can equal 0 to 0.1, depending on root depth (0.5 is typical))</td>
<td>-</td>
<td>(K_{NH} = 0.1854 + 0.3922(rz)^{(2.6077)})</td>
</tr>
<tr>
<td>Background Concentration</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Note: It is prudent to assume that all TKN entering the wetland can appear as ammonia; so, assume (C_o) for ammonia is equal to influent TKN.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrate Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>At 0(^\circ)C, (K_{f}(d^{-1}))</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>At 1(^\circ)C, (K_{20})</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(\theta)</td>
<td>1.15</td>
<td>1.15</td>
</tr>
<tr>
<td>Background Concentration, mg/l</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Note: It is conservative to assume that all ammonia removed in the previous step can appear as nitrate; so, (C_o) for nitrate removal design equals (C_e) from ammonia removal plus nitrate present in the influent.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TN Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effluent (T_N = C_e(NO_3) + (C_e(NH_4) - C_e(NO_3)))</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Background Concentration, mg/l</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Note: A specific model for total nitrogen removal is not available in this set. The effluent TN can be estimated as the sum of residual ammonia and remaining nitrate ((C_o - C_e))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Phosphorus Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_p), mm/d x 0.1</td>
<td>2.73</td>
<td>2.73</td>
</tr>
</tbody>
</table>

\(C_e/C_o = \exp(-K_p/HLR) \)

\(C_o/C_e = \exp(-K_p/HLR) \)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP removal does not depend on temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLR = average hydraulic loading rate, cm/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background Concentration, mg/l</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Fecal Coliform Removal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FWS Wetland</th>
<th>SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_e/C_o \text{ mpn/100mL}$</td>
<td>[1/1 + $K(t/x)]^x$</td>
<td>[1/1 + $K(t/x)]^x$</td>
</tr>
<tr>
<td>K_{20}, d$^{-1}$</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>θ</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>t, d</td>
<td>HRT in the system</td>
<td>HRT in the system</td>
</tr>
<tr>
<td>x</td>
<td>numbers of wetland cells in series</td>
<td>numbers of wetland cells in series</td>
</tr>
<tr>
<td>Background Concentration, cfu/100 mL</td>
<td>2000</td>
<td>2000</td>
</tr>
</tbody>
</table>

Note: This model was developed for facultative ponds and is believed to give a conservative estimate for fecal coliform removal in both FWS and SF wetlands.

10.7.7 Vector Control

FWS systems provide ideal breeding habitat for mosquitoes. Plans for biological control of mosquitoes through the use of fish that prey on mosquito larvae, fish and swallows should be incorporated in the design. Thinning of vegetation may also be necessary to eliminate pockets of water that are inaccessible to fish.

Mosquito breeding should not be a problem in SF systems, provided the system is designed to prevent mosquito access to the subsurface water zone. The surface is normally covered with pea gravel or coarse sand to achieve this purpose.

10.7.8 Vegetation Harvesting

Harvesting of the emergent vegetation is only required to maintain hydraulic capacity, promote active growth, and avoid mosquito growth. Harvesting for nutrient removal is not practical and is not recommended.

10.7.9 Monitoring

Monitoring is necessary to maintain loadings within design limits. A routine monitoring program should be established for the following parameters:

- Wastewater application rates (m3/m2•d);
- Discharge flow rates (m3/d);
- Wastewater quality, including BOD$\text{$_5$}$ and COD, suspended solids, total dissolved solids, total nitrogen, total phosphorous, pH and sodium adsorption ratio; and
- Discharge water quality according to the analyses summarized in item (c).

10.8 Floating Aquatic Plant Treatment Systems

10.8.1 General

Aquatic treatment systems consist of one or more shallow ponds in which one or more species of water tolerant vascular plants such as duckweed is grown. The shallower depths and the presence of aquatic macrophytes in the place of algae are the major differences between aquatic treatment systems and stabilization ponds. The presence of plants is of great practical significance because the effluent from aquatic systems is of higher quality than the effluent from stabilization pond systems for equivalent or shorter detention times. This is true,
particularly when the systems are situated after conventional pond systems which provide greater than primary treatment.

In aquatic systems, wastewater is treated principally by bacterial metabolism and physical sedimentation, as is the case in conventional trickling filter systems. The aquatic plants themselves bring about very little actual treatment of the wastewater. Their function is to provide components of the aquatic environment that improve the wastewater treatment capability and/or reliability of that environment.

10.8.2 Plant Selection
The principal floating aquatic plants used in aquatic treatment systems are, duckweed and pennywort. These plants are described in greater detail in the following discussion.

10.8.2.1 Duckweed
Duckweed are small, green freshwater plants with fronds from one to a few millimetres in width with a short root, usually less than 12 mm in length. Duckweed are the smallest and the simplest of the flowering plants and have one of the fastest reproduction rates. Duckweed grown in wastewater stabilization pond effluent (at 27°C) doubles in frond numbers, and therefore in area covered, every four days. The plant is essentially all metabolically active cells with very little structural fibre.

Small floating plants, particularly duckweed, are sensitive to wind and may be blown in drifts to the leeward side of the pond unless baffles are used. Redistribution of the plants requires manual labour. If drifts are not redistributed, decreased treatment efficiency may result due to incomplete coverage of the pond surface. Odours have also developed where accumulated plants are allowed to remain and undergo anaerobic decomposition.

10.8.2.2 Pennywort
Pennywort is generally a rooted plant. However, under high-nutrient conditions, it may form hydroponic rafts that extend across water bodies. Pennywort tends to intertwine and grows horizontally; at high densities, the plants tend to grow vertically. The photosynthetic leaf area of pennywort is small, and, at dense plant stands, yields are significantly reduced as a result of self shading. Pennywort exhibits mean growth rates greater than 0.010 kg/m²·d in warm climates. Nutrient uptake by pennywort is approximately the same during both warm and cool seasons. Pennywort is a cool season plant that can be integrated into lettuce biomass production systems.

10.8.3 Types of Systems
The principal types of floating aquatic plant treatment systems used for wastewater treatment are those employing duckweed.

10.8.3.1 Duckweed Systems
Duckweed and pennywort have been used primarily to improve the effluent quality from facultative ponds or stabilization ponds by reducing the algae concentration. Conventional pond design may be followed for this application, except for the need to control the effects of wind. Without controls, duckweed will be blown to the downwind side of the pond, resulting in exposure of large surface areas and defeating the purpose of the duckweed cover. As noted previously, accumulations of decomposing plants can also result in the production of odours. Floating baffles can be used to construct cells of limited size to minimize the amount of open surface area exposed to wind action.
10.8.4 Climates Constraints
Duckweed is cold tolerant and can be grown practically at temperatures as low as 7°C. Climate change and temperature projections should be made to ensure practical use of this system.

10.8.5 Preapplication Treatment
The minimum level of preapplication treatment should be primary treatment, short detention time aerated ponds or the equivalent. Treatment beyond primary depends on the effluent requirements. Use of oxidation ponds in which high concentrations of algae are generated should be avoided prior to aquatic treatment because algae removal is inconsistent. When there are effluent limitations on phosphorus, it should be removed in the preapplication treatment step because phosphorus removal in aquatic treatment systems is minimal.

10.8.6 Design Parameters
The principal design parameters for aquatic treatment systems include hydraulic detention time, water depth, pond geometry, organic-loading rate, and hydraulic loading rate. Typical design guidelines for duckweed systems are summarized in Table 10.10 for different levels of pre-application treatment.

Table 10.10 Floating Aquatic Plant System Design Criteria

<table>
<thead>
<tr>
<th>Item</th>
<th>Duckweed Treatment System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent Wastewater</td>
<td>Facultative Pond Effluent</td>
</tr>
<tr>
<td>Influent BOD(_5) (mg/l)</td>
<td>40</td>
</tr>
<tr>
<td>BOD(_5) Loading (kg/ha·d)</td>
<td>22 - 28</td>
</tr>
<tr>
<td>Water Depth (m)</td>
<td>1.3 - 2.0</td>
</tr>
<tr>
<td>Detention Time (d)</td>
<td>20 - 25</td>
</tr>
<tr>
<td>Hydraulic Loading Rate (m(^3)/ha·d)</td>
<td>570 - 860</td>
</tr>
<tr>
<td>Water Temperature (°C)</td>
<td>>7</td>
</tr>
<tr>
<td>Harvest Schedule</td>
<td>Monthly</td>
</tr>
</tbody>
</table>

10.8.7 Pond Configuration

10.8.7.1 Duckweed Systems
Duckweed systems should be designed as conventional stabilization ponds except for the need to control the effects of wind. Floating baffles are used to minimize the amount of surface area exposed to direct wind action. Without this control, duckweed will be blown by the wind and treatment efficiencies cannot be achieved.

10.8.8 Plant Harvesting and Processing
The need for plant harvesting depends on water quality objectives, the growth rates of the plants, and the effects of predators such as weevils. Harvesting of aquatic plants is needed to maintain a crop with high metabolic uptake of nutrients. Significant phosphorus removal is achieved only with frequent harvesting. Duckweed harvesting for nutrient removal may be required as often as once per week during warm periods.

If the plants are not first partially dried or squeezed, the high moisture content tends to reduce the effectiveness of the compost process and results in the production of a liquid stream that must be disposed of. Ground duckweed can be used as animal feed without air drying.

10.8.9 Detailed Design Guidelines
The following sources contain detailed design information for natural wastewater treatment systems:

Chapter 11 Treated Effluent Disposal to Land ... 222

11.1 General .. 222
 11.1.1 Definitions .. 222

11.2 Treated Effluent Application Methods ... 222
 11.2.1 General .. 222
 11.2.2 Irrigation .. 223
 11.2.2.1 Piping to Sprinklers .. 223
 11.2.2.2 Sprinkling System .. 223
 11.2.2.3 Site Buffer Zone ... 223

11.2.3 Rapid Infiltration (RI) .. 224
 11.2.3.1 Applicability .. 224
 11.2.3.2 Area and Infiltration Rate ... 224
 11.2.3.3 Loading Cycle .. 226
 11.2.3.4 Application Rate ... 226
 11.2.3.5 Monitoring ... 226
 11.2.3.6 Separation Distances .. 227

11.2.4 Runoff ... 227

11.2.5 Fencing and Warning Signs .. 227

11.3 Guidelines for Treated Effluent Irrigation .. 227
 11.3.1 Assessment of Municipal Effluent Quality for Treated Effluent Irrigation Development 228
 11.3.1.1 Natural Irrigation Water Quality Characterization 228
 11.3.1.2 Comprehensive Treated Effluent Characterization 229
 11.3.1.2.1 General Health Related Aspects ... 229
 11.3.1.2.2 Other Water Quality Aspects .. 230
 11.3.1.3 Annual Treated Effluent Quality Monitoring Requirements 235
 11.3.1.4 Other Requirements .. 237

11.3.2 Assessment of Land Suitability for Proposed Treated Effluent Irrigation Development 237
 11.3.2.1 Site Suitability .. 238
 11.3.2.1.1 Soil Assessment ... 238
 11.3.2.1.2 Soil Properties .. 239
 11.3.2.1.3 Topography ... 239
 11.3.2.2 Other Requirements .. 240

11.3.3 Assessment of System Design Needs for Proposed Treated Effluent Irrigation Development ... 240
 11.3.3.1 Climate ... 240
11.3.3.2 Land Area.. 240
11.3.3.3 Application Loading Rates .. 241
11.3.3.4 Crop Considerations ... 242
11.3.3.5 Treated Effluent Storage Ponds ... 242

11.3.4 System Operation... 242

11.4 Reuse of Treated Effluent for Golf Course Irrigation ... 242
11.4.1 Environment ... 243
11.4.2 Soils and Vegetation ... 244
11.4.3 Planning .. 244
11.4.4 Design .. 245
11.4.5 Management Concerns .. 245
Chapter 11 Treated Effluent Disposal to Land

11.1 General

With many communities throughout the world approaching or reaching the limits of their available water supplies, reclaimed water use has become an attractive option for conserving and extending available water supplies. Reclaimed water use is the controlled application of treated wastewater by irrigation (onto the land surface to achieve disposal, utilization, and/or treatment of the wastewater) or by infiltration (into the soil). This can be achieved by a number of options including land application, surface and subsurface irrigation, in-ground trenches, and overland flow, as approved by regulatory agencies having jurisdiction.

Water reclamation and non-potable reuse only require conventional water and wastewater treatment technology that is widely practised and readily available in countries throughout the world. Furthermore, because properly implemented non-potable reuse does not entail significant health risks, it has generally been accepted and endorsed by the public in the urban and agricultural areas where it has been introduced. This section provides information on planning considerations re-use applications, water quality considerations, and guidelines for wastewater irrigation and other re-use criteria.

In addition to the general pre-design report requirements, the designer shall include supplemental information as outlined in Section 1.3.6.

11.1.1 Definitions

Chemical Oxygen Demand (COD)
A quantitative measure of the amount of oxygen required for the chemical oxidation of carbonaceous (organic) material in wastewater using inorganic dichromate or permanganate salts as oxidants in a 2-hour test.

Infiltration
The flow or movement of water through interstices or pores of soil or other porous medium.

Irrigation
The artificial application of water to lands to meet the water needs of growing plants not met by rain fall.

11.2 Treated Effluent Application Methods

11.2.1 General
Land application of treated sewage effluent is a method of disposing of effluent without direct discharge to surface waters. Ground disposal installations are normally used where the waste contains pollutants which can successfully be removed through distribution to the soil mantle. These pollutants can be removed through organic decomposition in the vegetation-soil complex and by adsorptive, physical, and chemical reactions with earth materials. Preliminary considerations of a site for ground disposal should include the compatibility of the waste with the organic and earth materials, as well as the percolation rates and exchange capacity of the soils. The ground disposal of treated effluent will eventually recharge the local groundwater; therefore, the quality, direction and rate of movement, and local use of the groundwater, present and potential, are prime considerations in evaluating a proposed site.

It is essential to provide good vegetation growth conditions and removal of nutrients. It must be realized that a groundwater mound will develop below the application area after it is in use. The major factors in design of
ground disposal fields are topography, soils, geology, hydrology, weather, agricultural practice, adjacent land use, and equipment selection and installation.

The primary methods used for distributing treated effluent on the land are irrigation, and infiltration.

Table 11.1 outlines various features and performance of treated effluent land application systems.

Table 11.1 Comparison of Features and Performance for Treated Effluent Utilization, Treatment and Disposal Systems

<table>
<thead>
<tr>
<th>System Requirement</th>
<th>Standard Rate Irrigation</th>
<th>Rapid Infiltration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Permeability</td>
<td>Moderate (Medium Texture Soil)</td>
<td>Rapid (Loamy Sands and Gravels)</td>
</tr>
<tr>
<td>Utilization of Water and Nutrients</td>
<td>High</td>
<td>None</td>
</tr>
<tr>
<td>Slope</td>
<td>Up To 30% for Sprinkler and 6% for Surface Methods</td>
<td>Not Critical</td>
</tr>
<tr>
<td>Storage</td>
<td>High (7-9 Months)</td>
<td>NIL</td>
</tr>
<tr>
<td>Land Area</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Water Quality – Salinity, etc.</td>
<td>Very High</td>
<td>Medium to Low</td>
</tr>
<tr>
<td>Treatment Efficiency</td>
<td>Very High</td>
<td>Medium</td>
</tr>
<tr>
<td>Loading Rate</td>
<td>500 – 6000 l/m²•a</td>
<td>6000 – 100,000 l/m²•a</td>
</tr>
</tbody>
</table>

11.2.2 Irrigation

11.2.2.1 Piping to Sprinklers

The piping should be arranged to allow the irrigation pattern to be varied easily. Stationary systems are preferred; but if a moveable system is proposed, one main header must be provided with individual connections for each field and sufficient spare equipment must be available to assure non-interrupted irrigation. Facilities must be provided to allow the pipes to be completely drained at suitable points to prevent freezing and spillage of treated effluent into sensitive areas.

11.2.2.2 Sprinkling System

Sprinklers should be located to give a non-irrigated buffer zone around the irrigated area, and design of the buffer zone should consider wind transport of the treated effluent. The system shall be designed to provide an even distribution over the entire field.

The selected application rate should be low enough to allow the irrigated treated effluent to percolate into the soil and to assure proper residency within the soil mantle. Proposed application rates will not be accepted without substantiating data.

In general, sufficient monitoring controls should be provided to indicate the degree of efficiency with which the sprinklers are working. A pressure gauge and flow meter should be provided.

11.2.2.3 Site Buffer Zone

The requirements for buffer zones around the irrigation operation are outlined in Section 10.3.3.2, and are dependent on a number of site-specific factors.
11.2.3 Rapid Infiltration (RI)

11.2.3.1 Applicability

Rapid infiltration (RI) involves the application of treated effluent to land by means of basins. The treated effluent percolates through the soil, undergoes a variety of physical, chemical and biological reactions and eventually reaches the groundwater. The loss of water via plants or evaporation is minor compared to the loss by percolation. The loading must be intermittent to allow for the restoration of aerobic conditions in the soil. Acceptable salinity, boron, nitrogen and phosphorus levels in the treated effluent will be governed by the potential use of the groundwater downstream of the RI site. The permeability of the site is, however, very important to the performance of a RI system. Therefore, the sodium adsorption ratio of the effluent should be below 9.

Optimum site conditions for rapid infiltration (RI) are dependent upon the quantity of wastewater to be treated and the degree of treatment required. Generally, there will be an inverse relationship between maximum wastewater application rate and the degree of treatment. Soil conditions required for a good RI site are a deep uniform sandy loam to loamy sand having the following chemical characteristics:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.0-8.5</td>
</tr>
<tr>
<td>Organic Matter</td>
<td>0.5-3.0%</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>2 dS/m</td>
</tr>
<tr>
<td>Sodium Adsorption Ratio</td>
<td>10</td>
</tr>
<tr>
<td>Cation Exchange Capacity</td>
<td>10 meq/100g</td>
</tr>
<tr>
<td>Free Ca or Mg CO₃ should be present</td>
<td></td>
</tr>
</tbody>
</table>

Rapid infiltration installations require permeable granular subsurface materials. A minimum of 4 m separation between the water table and the basin bottom between irrigation cycles is recommended. In situations where, potable water systems will not be affected and tertiary treatment is provided, the 4 m vertical separation distance may be reduced. As a minimum, the separation distance should be 1 m between the water table and the bottom of the basin during operation. Adverse natural groundwater conditions can be modified by the installation of underdrains and/or recovery wells.

Excessive slopes will restrict the usefulness of a RI site. The maximum slope is that which maintains downward infiltration with no premature lateral discharge. Generally, the maximum slope is 5% unless considerable earth moving is undertaken. Uniform flat topography will reduce construction costs. In areas where facultative lagoons are used for treatment, the lagoons will generally be large enough to provide cold weather storage. However, the infiltration area will have to be large enough to treat the annual wastewater production during the warm weather period. Treated effluent from treatment plants with short detention times will retain sufficient heat to allow continuous RI treatment and eliminate the need for storage.

11.2.3.2 Area and Infiltration Rate

Prior to site selection, the designer must determine the approximate land area required for an RI system. This can be obtained by using sewage flow data and the annual amount of infiltration per unit area. Considerations should be made for future projections of infiltration rate based on climate change parameters. The hydraulic conductivity required to estimate total infiltration can be determined from Table 11.2 and the following calculations. It is then suggested that a factor of 1.5 be applied to the calculated area requirements.
Table 11.2 Hydraulic Conductivities of Various Granular Deposits

<table>
<thead>
<tr>
<th>Deposit</th>
<th>Hydraulic Conductivity (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean, well sorted sand and gravel</td>
<td>10^1</td>
</tr>
<tr>
<td>Clean sand, moderately sorted gravel</td>
<td>10^2</td>
</tr>
<tr>
<td>Moderately sorted sand and gravel</td>
<td>10^3</td>
</tr>
<tr>
<td>Poorly sorted sand and gravel</td>
<td>10^4</td>
</tr>
</tbody>
</table>

Infiltration capacity is estimated by the following procedure:

- Estimate site hydraulic conductivity, in cm/s.
- Determine annual hydraulic loading and convert L/m²•d to m/a (multiply by 0.365).
- Interpolate the site area (on the y-coordinate of Figure 10.1) using the line most closely representing the estimated hydraulic loading rate determined. The site area can also be determined by dividing the annual average treated effluent flow rate by the design annual hydraulic loading as given below:

If seasonal treated effluent flows are not equalized, the highest average seasonal flow rate should be used for design. The initial estimate of required land area computed using the equation above may be adjusted depending on constraints, as discussed in the section dealing with the layout of the infiltration area.²
- Maximum daily infiltration capacity of the site in question can be read off the x-coordinate (Figure 11.1).

Figure 11.1 Determination of Land Area Required for Rapid Infiltration Systems

The infiltration rate must be confirmed by field testing. Surface area requirements for an RI system must include:

- Infiltration basins and dykes;
- Maintenance and laboratory buildings(s);
- Possibly on-site treatment facilities;
- On-site roads;
- Expansion and emergency use areas; and
• Buffer strips.

11.2.3.3 Loading Cycle
In Atlantic Canada, RI systems would likely require an altered loading cycle with respect to seasons because longer resting periods may be required for soil drying and aeration during winter. Decreasing the application rate and increasing the length of the application and resting period are possible means of overcoming the problems of winter application.

Suggested loading cycles are shown in Table 11.3. The values given in this table are considered guidelines. Actual loading cycles should consider site-specific conditions.

Table 11.3 Suggested Hydraulic Loading Cycles for Rapid Infiltration Systems

<table>
<thead>
<tr>
<th>Objective of Preapplication Treatment Period</th>
<th>Season</th>
<th>Application Period (Days)</th>
<th>Drying (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximize infiltration rates of nitrification</td>
<td>Summer</td>
<td>1 - 3</td>
<td>4 - 5</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>1 - 3</td>
<td>5 – 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 - 5</td>
<td>5 – 12</td>
</tr>
<tr>
<td>Maximize nitrogen removal</td>
<td>Summer</td>
<td>7 - 9</td>
<td>10 - 15</td>
</tr>
<tr>
<td></td>
<td>Winter</td>
<td>9 - 12</td>
<td>12 - 18</td>
</tr>
</tbody>
</table>

11.2.3.4 Application Rate
Once the loading rate and loading cycle have been established, the application rate can be calculated. For example, if the hydraulic loading rate is 20 m/annum and the loading cycle is one day of application alternated with seven days of drying, the application rate is as follows:

\[A = B \times \frac{(C + D)}{C} \times E \]

- \(A \) = Daily Application Rate
- \(B \) = Hydraulic loading rate
- \(C \) = Time on
- \(D \) = Time off
- \(E \) = Conversion Factor (Annual to Daily)

The application rate should be used to determine the maximum depth of the applied treated effluent. For instance, if the measured basin infiltration rate is \(1.7 \times 10^{-4} \) cm/s the maximum wastewater depth will be the daily application rate minus \(1.7 \times 10^{-4} \).

In general, maximum treated effluent depth should not exceed 50 cm with a preferable maximum depth of 30 cm. If the treated effluent depth calculation indicates the recommended maximum will be exceeded, either the loading rate should be decreased or the loading cycle adjusted until the maximum basin depth is acceptable.

11.2.3.5 Monitoring
A monitoring program should provide applied treated effluent quality, the quality of groundwater affected by the RI system and, if required, an analysis of the soil affected by the RI system. Several groundwater samples should be collected from sites expected to be influenced by RI and compared with samples from areas not affected by treated effluent infiltration.
11.2.3.6 Separation Distances
The requirements for RI separation distances are outlined in Section 11.3.3.2.

11.2.4 Runoff
The system shall be designed to prevent surface runoff from entering or leaving the project site.

11.2.5 Fencing and Warning Signs
The project area shall be enclosed with a suitable fence to exclude livestock and discourage trespassing, depending on the level of treatment provided and type of effluent disposal used. A vehicle access gate of sufficient width to accommodate mowing equipment should be provided. All access gates should be provided with locks.

Appropriate signs should be provided along the fence around the project boundaries where necessary to designate the nature of the facility and advise against trespassing.

11.3 Guidelines for Treated Effluent Irrigation
Treated municipal effluent does not always meet a quality standard that would enable its unrestricted discharge to the sensitive receiving environment. For land application, concerns still remain with respect to elevated concentrations of soluble salts, nutrients, and microbiological quality of the treated effluent.

The major difference between municipal treated effluent and “high quality irrigation water” is the higher concentration of living and nonliving organic material, nitrogen, phosphorus, and in some instances, higher sodium and salt levels in the municipal treated effluent. Low concentration of grease, oil, detergents, and certain metals may also be present, but these are generally at concentrations that do not adversely impact crops and/or the land if applied through irrigation at rates compatible with a crops seasonal water deficit need. Treated effluent suitability for irrigation is based on a select set of water quality parameters to be tested prior to and during their release. Site acceptability is to be based on pertinent soil and geological properties, topography, hydrology, climate, climate change parameters, as well as zoning and cropping intentions.

In contrast with natural irrigation waters, municipal treated effluent has numerous additional health and environmental factors that need to be evaluated to ensure no detrimental impacts occur from their use. Due to the origin, the variety and the often-changing quality of wastewater generated by municipalities, it is imperative that municipal treated effluent be tested for a much wider range of water quality parameters than is currently necessary for irrigation with natural waters. Irrigation with municipal treated effluent is a suitable disposal option in Atlantic Canada where additional moisture can be effectively utilized for improved crop production.

Treated effluent loading is to be based on the consumptive water use of the crop being grown. This loading, however, must also consider seasonal moisture deficiencies, system application efficiencies, and additional considerations related to annual soil leaching and crop nutrient utilization factors. The primary objective should be enhancement of crop production. The root zone of productive soils can often serve as one of the most active media for the decomposition, immobilization, or utilization of wastes. Considering these active processes in the topsoil, treated effluent can often be safely released to land at water quality standards less restrictive than those that would apply to a surface water release option. Further, with the added benefits currently applied to waste re-utilization processes and water conservation practices, treated effluent irrigation is considered an attractive waste disposal option.
11.3.1 Assessment of Municipal Effluent Quality for Treated Effluent Irrigation Development

As water quality standards for municipal treated effluent discharging to surface water bodies become more stringent, the associated treatment costs correspondingly escalate. Irrigation is therefore becoming a more desired alternative for treated effluent disposal for many communities. However, since different water quality variables need to be considered when evaluating wastewater treatment plant effluents as a potential irrigation water source than those considered for its direct discharge into a receiving stream, a specific set of treated effluent quality reporting requirements must be outlined and defined. In this overall investigation it is therefore important to first evaluate restrictions that may apply to the use of standard sources of irrigation water and then consider what supplemental evaluations would apply to treated effluent irrigation use.

11.3.1.1 Natural Irrigation Water Quality Characterization

The use of waters for irrigation application normally involves evaluation of the following water quality parameters:

- **Electrical conductivity (EC):** is a reliable indicator of the total dissolved solids (salts) content of the water. The addition of irrigation water to soils adds to the concentration of salt in the soil. Concentration of these salts will result in an increase in osmotic potential in the soil solution interfering with extraction of water by the plants. Toxic effects may also result with an increase in salinity. EC is measured in dS m\(^{-1}\). For specific values on acceptable EC levels in waters used for irrigation, refer to Table 10.4 that follows.

- **Sodium Adsorption Ratio (SAR):** is an indicator of the sodium hazard of water. Excess sodium in relation to calcium and magnesium concentrations in soils destroys soil structure that reduces permeability of the soil to water and air. Sodium may be toxic to some crops.

\[
SAR = \frac{N^{+}\text{Na}}{\sqrt{Ca^{2+} + Ma^{2+}}} \quad \text{and} \quad SAR = \frac{N^{+}\text{Na}}{\sqrt{Ca^{2+} + Mg^{2+}}}
\]

(for concentrations in me/L) \quad \text{(for concentrations in mmoles of charge per litre)}

Cations are expressed in mequivalent of charge per litre or mmoles of charge per litre.

For specific values on acceptable SAR levels in waters used for irrigation, refer to Table 11.4.

- **Boron (B):** is very toxic to most crops at very low levels. In most jurisdictions, excess natural boron in soils and water has not been a problem. Acceptable boron concentrations for agricultural use are included in the applicable sections of the most recently published Canadian Environmental Quality Guidelines (CEQG).

- **Bicarbonate (HCO\(_3\)):** is considered hazardous when concentrations are excessive in some areas and not in others. Waters of high bicarbonate concentrations have been used for many years with no adverse effects in some jurisdictions. Acceptable bicarbonate concentrations for agricultural use are included in the applicable sections of the most recently published CEQG.

For further information on any other chemical parameters that may impact irrigation suitability from natural water sources, reference should be made to the applicable sections of the most recently published CEQG.

In light of the preceding factors, only two parameters, SAR and EC are normally of concern when irrigating with most available water sources in most jurisdictions. The limits for these parameters are as follows:
Table 11.4 Irrigation Water Quality Standards

<table>
<thead>
<tr>
<th></th>
<th>Safe</th>
<th>Possibly Safe</th>
<th>Hazardous</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC dS m⁻¹</td>
<td>< 1.0</td>
<td>1.0 – 2.5</td>
<td>> 2.5</td>
</tr>
<tr>
<td>SAR</td>
<td>< 4</td>
<td>4 – 9</td>
<td>> 9</td>
</tr>
</tbody>
</table>

The limits under the heading “Safe”, are considered safe for all conditions. The “Possibly Safe” limits are considered safe for some conditions. Decisions should be based on the advice of a specialist. The “Hazardous” limits are considered unsuitable for almost all conditions.

Conditions to be assessed when dealing with waters that are “Possibly Safe” are as follows:
- Climate of the area - The deficit dictates the amount of water applied and consequently the amount of salt applied. Climate change projections of the area should be considered for this condition.
- Crops - Crops with high consumptive use require more irrigation water which again results in higher salt applications.
- Irrigation Practices - frequent irrigation results in less leaching than less frequent water applications. Light, frequent irrigation results in more evaporation. Fall irrigation results in increased leaching.
- Internal drainage - Good internal drainage facilitates rapid leaching of salts out of the root zone. System designs for irrigation with possibly safe water quality require specific investigation and the services of a specialist.

11.3.1.2 Comprehensive Treated Effluent Characterization

In contrast with fresh irrigation water, municipal treated effluent has additional health and environmental factors that need to be considered to ensure no detrimental impacts occur from its use. Due to the origin, variety and often changing quality of treated effluent generated by municipalities, towns and private sources, it is imperative that municipal treated effluents be periodically tested for a much wider range of water quality parameters than is currently necessary for irrigation with fresh waters. A comprehensive characterization of the treated effluent is necessary as part of the initial treated effluent irrigation application process and subsequently as may be specified by the regulatory agency having jurisdiction. Annual monitoring of a number of key biological and chemical indicator parameters, both prior to and subsequent to any treated effluent irrigation, should also be performed. The comprehensive treated effluent quality characterization requirements and the annual treated effluent quality monitoring requirements are discussed further in subsequent sections that follow.

The comprehensive characterization of treated effluent quality provides a means to ensure a basic level of irrigation quality control. It also provides useful baseline information to evaluate impacts from future irrigation. These impacts may relate to changes that occur in community water sources, climate change in the area, waste treatment processes, community size, and community or industrial discharge loadings. In addition, the treated effluent quality characterization process may also provide an opportunity for community planners and engineering consultants to better evaluate the effectiveness of the treatment process and its ability to eliminate harmful constituents that could normally restrict the potential for irrigation use. The requirement of a comprehensive testing analysis in the initial application may enable future analytical testing requirements to be less onerous while still ensuring adequate protection of human health and the environment.

11.3.1.2.1 General Health Related Aspects

Biological assessment of municipal treated effluent is obtained by means of biological counts performed on the treated effluent prior to or on release. Potential human pathogens of concern found in domestic wastewater may be grouped into the following four categories:
- Bacteria (Salmonella, Shigella, Mycobacterium, Klebsiella, Clostridium);
- Protozoan parasites (Entamoeba, Giardia, Trichomonas);
- Helminth parasites (Ascaris, Toxacara, Taenia, Trichuris, Enterobius); and
- Viruses (Picornaviruses, Adenoviruses, Rotaviruses).

The types and numbers of pathogenic organisms in wastewater depend on the nature of the wastewater being treated and the type of wastewater treatment provided. Wastewater organisms such as bacteria and viruses that are adsorbed to particulate matter tend to co-precipitate during settling phases of sewage treatment, and are thereby partly removed as solids from the water phase (Moore et al. 1975). Similarly, encysted and egg stages of parasites, with specific gravities 1.06 to 1.2 (Englebrecht 1978), are effectively removed from the liquid wastewater during the settling phases of wastewater treatment process.

The use of trickling filters, activated sludge systems, and effluent disinfection are additional treatment processes traditionally used to further reduce certain pathogenic organisms in wastewater. However, there is no single wastewater treatment process which will remove all pathogenic microorganisms. Many potentially disease-causing microorganisms will therefore continue to exist in wastewater. The types and amounts of these microorganisms will vary greatly with the treatment process or combination of the processes utilized. Therefore, for wastewater irrigation to be authorized, the minimum treatment requirement is secondary treatment followed by disinfection, and storage as required by regulatory agencies having jurisdiction. Despite their presence, the potential health hazard associated with utilizing treated effluent for irrigation can be minimized by adopting certain precautions and procedures.

The majority of the potentially harmful microorganisms are killed over a period of time by exposure to strong sunlight, high temperatures, and dry weather that may allow their direct application for sites with restricted access. Disinfection of treated effluent prior to land application shall be required where warranted by public health concerns (e.g. golf courses, parks, etc.). Bacteriological quality shall meet the standards outlined in Table 11.6.

The timing of effluent irrigation with respect to harvesting crops and grazing livestock is also a factor that must be addressed; for further details reference should be made to Section 10.3.3.4.

Assessment of bacteriological constituents for the comprehensive treated effluent characterization requires only the testing of e-coli and/or fecal coliforms. Additional testing for other bacteriological parameters has not been found to be necessary in some jurisdictions as adoption of a best practicable treatment approach requiring primary treatment, storage, and various crop restrictions before irrigation, has proven appropriate in protecting the public from any adverse exposures to these particular constituents.

11.3.1.2.2 Other Water Quality Aspects
Other water quality aspects to be included in the comprehensive treated effluent characterization assessment prior to the development of a treated effluent irrigation system are included in the following section:

1. General Chemical Parameters
 The general parameters are those that are analyzed to assess the effectiveness of the wastewater treatment process and to evaluate variability in the quality of the wastewater prior to its release to the environment. They also represent water quality values that, if exceeded, can often restrict treated wastewater sources from being considered for irrigation purposes.
 - Biochemical Oxygen Demand (BOD) typically below 25 mg/L for most municipal treated effluents following secondary treatment.
 - Total Suspended Solids (TSS) typically below 25 mg/L for most municipal treated effluent following secondary treatment.
 - Chemical Oxygen Demand (COD) typically below 50 mg/L for most municipal treated effluents following
secondary treatment.

- pH typically ranges from 6.5 to 8.5 for most municipal treated effluents. These values are comparable to most natural surface waters and are considered to pose no restriction to irrigation use. A continued long-term use of waters outside this pH range could eventually alter naturally occurring pH levels in surface soils to which they are applied and therefore could possibly lead to micro nutrient imbalances and potential future crop production and fertility problems.
- Electrical Conductivity (EC) these values range widely within municipal treated effluent and like some natural water sources exceed levels that would be recommended for irrigation.

Those municipal treated effluent with EC values less than 1.0 dS/m are considered of good quality and should pose no problems for irrigation use, unless the SAR of the treated effluent is greater than 4.

Municipal treated effluents found to have EC values between 1.0 and 2.5 dS/m are considered marginal for irrigation and are usually restricted to use on land with favourable internal drainage properties. Crops normally grown under irrigation with such municipal treated effluent would not be impacted significantly. For situations where treated effluent of this quality is utilized for irrigation on a regular ongoing basis, supplemental approval conditions, requesting the periodic testing and reporting of salinity levels for lands being irrigated, would most likely apply. Results from such testing should be reported to the regulatory agency having jurisdiction, if:
- Complaints of adverse impacts to the irrigated lands have been raised; or
- An application for approval renewal was being processed and concerns over deteriorating crop conditions were an issue.

Provision for periodic salt leaching is often advisable when considering treated effluent irrigation with water in this EC range.

Treated effluents with EC values exceeding 2.5 dS/m must not be used for irrigation purposes. Any such application would be restricted to a low volume discharge situation and require supplemental monitoring and reporting to be compiled on a regular basis.

It may be noted that EC values are often high in communities that utilize groundwater as a water supply source. Improving the quality of water supplies for these communities or adopting an alternate water supply source can lead to improvement in final treated effluent EC levels for these communities and possibly improve its suitability for irrigation.
- Sodium Adsorption Ratios (SAR) values can vary widely within municipal wastewater treatment facilities and like many natural water sources can often occur at levels that restrict their use for irrigation applications. Since adverse effects from high SAR are also dependent on the associated EC levels of the treated effluent, one should be aware of this interrelationship when evaluating SAR.

As a general guide treated effluent having SAR values less than 4 pose no problem for irrigation use.

Municipal treated effluents with SAR values ranging between 4 and 9 are considered marginal for irrigation and must include careful management to avoid potential damage to the land base or reduced crop productivity. Applying treated effluent of this quality can be particularly damaging on very fine textured soils or in situations where EC values of the treated effluent are less than 1 dS/m. Occasional calcium nitrate or gypsum applications may be helpful as a supplemental management practice on lands receiving irrigation applications of this quality for long periods of time. For situations where marginal municipal treated effluent quality is utilized for irrigation, supplemental approval conditions, including periodic testing would apply. Results from such testing should be reported to the regulatory agencies having jurisdiction, if:
- Complaints of adverse impacts to the irrigated lands have been raised; or
• Application for approval renewal was being processed and concerns of deteriorating soil quality or reduced crop productivity were an identified issue.

Treated effluent with SAR values exceeding 9 should not be used for irrigation.

Communities using ion-exchange process for water softening can significantly increase SAR values in the wastewater. Hence, careful and regular monitoring of SAR levels within systems where water softeners are used is important.

2. Nutrients

One of the main advantages of using treated effluent irrigation is that it may often enhance the fertility of the lands to which it is applied. This can add considerably to potential crop yield and therefore the associated agricultural resource value. Nutrient loading rates, while significant, are seldom at levels that would present a concern when using municipal treated effluent for irrigation. Most nutrient levels are well within the range that can be assimilated by plants if the treated effluent is applied at a rate and frequency that conforms to active crop growth. Potential contamination of groundwater would only be a concern under extremely shallow groundwater levels, unsuitable soil conditions, or gross mismanagement of the applied treated effluent. Since all these factors are carefully considered as part of the guidelines, potential contamination of the groundwater should not present a concern. The following nutrients should be analyzed and reported as part of the comprehensive treated effluent quality characterization process:

One of the main advantages of using treated effluent irrigation is that it may often enhance the fertility of the lands to which it is applied. This can add considerably to potential crop yield and therefore the associated agricultural resource value. Nutrient loading rates, while significant, are seldom at levels that would present a concern when using municipal treated effluent for irrigation. Most nutrient levels are well within the range that can be assimilated by plants if the treated effluent is applied at a rate and frequency that conforms to active crop growth. Potential contamination of groundwater would only be a concern under extremely shallow groundwater levels, unsuitable soil conditions, or gross mismanagement of the applied treated effluent. Since all these factors are carefully considered as part of the guidelines, potential contamination of the groundwater should not present a concern. The following nutrients should be analyzed and reported as part of the comprehensive treated effluent quality characterization process:

• Nitrogen can be evaluated in a number of different forms. Regular evaluation of nitrogen by analyzing for NO3-N, NH3-N, NO2-N, and TKN should be conducted. The typical concentration for total nitrogen of most municipal treated effluent is up to 20 mg/L. This means that if 30 cm/yr of treated effluent were applied, an N loading of 30 to 60 kg/ha/yr would be applied to the land base. Providing treated effluent is not applied in quantities that exceed the field moisture capacity during periods of treated effluent applications, and is applied during the active crop growing season, such loadings can be easily assimilated by the growing crop without harmful health or environmental concerns developing. Treated effluent that consists of a total nitrogen concentration within the typical range can easily be assimilated by the growing crop without harmful health or environmental concerns provided treated effluent is not applied in quantities that exceed the field moisture capacity and it is applied during active crop growing season.

• Phosphorus is to be evaluated as total phosphorus. The typical concentration of total phosphorus in municipal treated effluent following secondary treatment is up to 6 mg/L. If 30 cm/yr of treated effluent were applied, this would translate to a P loading of 6 to 18 kg/ha/yr. Since these levels are considered to be reasonably low and phosphorus is effectively immobilized in most soils at shallow depths, the potential for adverse impacts on groundwater quality is remote. Care must be exercised, however, to ensure treated effluent applications are applied at rates that do not exceed the infiltration capacity of the soils as high phosphorus levels in surface runoff and erosion sediments can create significant environmental concern if
washed into neighbouring lakes, streams or other surface water bodies.
- Potassium is another major nutrient present in treated effluent of value for crop production that should be evaluated. The typical concentration for potassium in most municipal treated effluent is up to 40 mg/L. If 30 cm/yr of treated effluent were applied this would translate to a K loading of 15 to 120 kg/ha/yr. Such levels are normally assimilated by crops and are thus not considered to be an environmental or health risk.

3. Major Cations and Anions

The treated effluent should be analyzed and reported for the following cations and anions in the required comprehensive treated effluent characterization:

<table>
<thead>
<tr>
<th>Cation/Anion</th>
<th>Concentration (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium (Ca)</td>
<td>Magnesium (Mg)</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>Carbonate (CO$_3$)</td>
</tr>
<tr>
<td>Bicarbonate (HCO$_3$)</td>
<td>Alkalinity, total (CaCO$_3$)</td>
</tr>
<tr>
<td>Fluoride (F)</td>
<td>Sulphate (SO$_4$)</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td></td>
</tr>
</tbody>
</table>

4. Metals

Uptake of harmful amounts of toxic heavy metals by plants is not considered a potential risk in use of municipal treated effluent, as most metals are removed from the wastewater in the primary treatment process, however, as a precautionary measure, all wastewater should be initially tested for the following metals in Table 11.5 levels are below recommended CCME CEQG prior to granting authorization for irrigation application.

Since collection of this information is intended more as a general treated effluent quality characterization inventory rather than for purposes of assessing irrigation water quality limits, specific values will likely not be exceeded for most municipal treated effluent tested.

In addition, a careful evaluation of any industrial discharges into the municipal system and their potential impact on overall wastewater quality must also be addressed. If, due to the nature of these industrial activities, concerns relating to any other chemicals become evident, then these chemicals should also be added to the comprehensive list of suggested chemical parameters for treated effluent characterization.

Table 11.5 Canadian Environmental Quality Guidelines for the Protection of Agricultural Water Uses

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (μg/L)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>5000</td>
<td>Can cause non-productively in acid solids (pH < 5.5), but more alkaline solids at pH > 5.5 will precipitate the ion and eliminate any toxicity.</td>
</tr>
<tr>
<td>Arsenic</td>
<td>100</td>
<td>Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice.</td>
</tr>
<tr>
<td>Beryllium</td>
<td>100</td>
<td>Toxicity to plants varies widely, ranging from 5 mg/L for kale to 0.5 mg/L from bush beans.</td>
</tr>
<tr>
<td>Boron</td>
<td>500-6000</td>
<td>Boron is very toxic to most crops at very low levels. In most jurisdictions, excess natural</td>
</tr>
<tr>
<td>Parameter</td>
<td>Concentration (μg/L)</td>
<td>Remarks</td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>---------</td>
</tr>
<tr>
<td>boron in soils and water has not been a problem.</td>
<td>Toxic to beans, beets and turnips at concentrations as low as 0.1 mg/L in nutrient solutions. Conservative limits recommended because of its potential for accumulation in plants and soils to concentrations that may be harmful to humans.</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>4.9</td>
<td>Not generally recognized as an essential growth element. Conservative limits recommended because of lack of knowledge on toxicity to plants.</td>
</tr>
<tr>
<td>Chromium - Trivalent Cr (iii) - Hexavalent Cr (vi)</td>
<td>4.9 8.0</td>
<td>Toxic to tomato plants at 0.1 mg/L in nutrient solution. Tends to be inactivated by neutral and alkaline soils.</td>
</tr>
<tr>
<td>Cobalt</td>
<td>50</td>
<td>Toxic to tomato plants at 0.1 mg/L in nutrient solution. Tends to be inactivated by neutral and alkaline soils.</td>
</tr>
<tr>
<td>Copper</td>
<td>200-1000</td>
<td>Toxic to a number of plants at 0.1 to 1.0 mg/L in nutrient solutions.</td>
</tr>
<tr>
<td>Fluoride</td>
<td>1000</td>
<td>Inactivated by neutral and alkaline soils.</td>
</tr>
<tr>
<td>Iron</td>
<td>5000</td>
<td>Not toxic to plants in aerated soils but can contribute to soil acidification and loss of reduced availability of essential phosphorus and molybdenum. Overhead sprinkling may result in unsightly deposits on plants, equipment, and buildings.</td>
</tr>
<tr>
<td>Lead</td>
<td>200</td>
<td>Can inhibit plant cell growth at very high concentrations.</td>
</tr>
<tr>
<td>Lithium</td>
<td>2500</td>
<td>Tolerated by most crops up to 5 mg/L; mobile in soil. Toxic to citrus at low levels (>0.075 mg/L). Acts similar to boron.</td>
</tr>
<tr>
<td>Manganese</td>
<td>200</td>
<td>Toxic to a number of crops at a few tenths mg to a few mg/L, but usually only in acid soils.</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>10-50</td>
<td>Not toxic to plants at normal concentrations in soil and water. Can be toxic to livestock if forage is grown in soils with high levels of available molybdenum.</td>
</tr>
<tr>
<td>Nickel</td>
<td>200</td>
<td>Toxic to a number of plants at 0.5 to 1.0 mg/L; reduced toxicity at neutral or alkaline pH</td>
</tr>
<tr>
<td>Selenium</td>
<td>20-50</td>
<td>Toxic to plants at concentrations as low as 0.025mg/L and toxic to livestock if forage is grown in soils with relatively high levels of added selenium. An essential element for animals bit in very low concentrations.</td>
</tr>
<tr>
<td>Tin</td>
<td>-</td>
<td>Effectively excluded by plants; specific tolerance unknown.</td>
</tr>
<tr>
<td>Titanium</td>
<td>-</td>
<td>(See remark for tin)</td>
</tr>
<tr>
<td>Parameter</td>
<td>Concentration (μg/L)(^a)</td>
<td>Remarks(^b)</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Tungsten</td>
<td>-</td>
<td>(See remark for tin)</td>
</tr>
<tr>
<td>Uranium</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Vanadium</td>
<td>100</td>
<td>Toxic to many plants at relatively low concentrations</td>
</tr>
<tr>
<td>Zinc</td>
<td>1000-5000</td>
<td>Toxic to many plants at widely varying concentrations; reduced toxicity at pH > 6.0 and in fine-textured or organic soils.</td>
</tr>
</tbody>
</table>

- (Limits are adopted from the Summary Table, Canadian Environmental Quality Guidelines, Canadian Council of Minister of the Environment, 2005)

11.3.1.3 Annual Treated Effluent Quality Monitoring Requirements

Wastewater must also be analyzed and results reported annually for certain water quality parameters, both prior to and on completion of each irrigation application event. This monitoring requirement is in addition to the comprehensive treated effluent characterization outlined in Section 11.3.1.2. For annual testing purposes the treated effluent should be sampled at the pipe inlet of the irrigation distribution equipment. The treated effluent quality for treated effluent irrigation shall meet the standards specified in Table 11.6.
Table 11.6 Treated Effluent Quality Guidelines for Wastewater Irrigation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Guidelines</th>
<th>Type of Sample</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Restricted Use</td>
<td>Unrestricted Use</td>
<td></td>
</tr>
<tr>
<td>E.Coli</td>
<td><200MPN/100 mL</td>
<td><2MPN/100 mL</td>
<td>Grab(twice/month) For unrestricted use, sampling should be conducted prior to startup and on a weekly basis. For restricted use sampling should be conducted prior to startup and then one more sample sometime during discharge.</td>
</tr>
<tr>
<td>BOD</td>
<td>25 mg/L</td>
<td>10 mg/L</td>
<td>Grab/composite** Sampling should be conducted at startup and once during discharge.</td>
</tr>
<tr>
<td>COD</td>
<td>50 mg/L</td>
<td>20 mg/L</td>
<td>Grab/composite** Samples collected twice annually, prior to and on completion of a major irrigation event</td>
</tr>
<tr>
<td>TSS</td>
<td>25 mg/L</td>
<td>10 mg/L</td>
<td>Grab/composite** For unrestricted use, sampling should be conducted prior to startup and on a weekly basis. For restricted use sampling should be conducted prior to startup and then one more sample sometime during discharge.</td>
</tr>
<tr>
<td>Electrical Conductivity</td>
<td>1.0 - 2.5 dS/m</td>
<td><1.0 dS/m</td>
<td>Grab/composite** Samples collected twice annually, prior to and on completion of a major irrigation event</td>
</tr>
<tr>
<td>SAR</td>
<td>4-9 for when EC >1.0 dS/m</td>
<td><4 (once/month)</td>
<td>Grab/composite** Samples collected twice annually, prior to and on completion of a major irrigation event</td>
</tr>
<tr>
<td>pH</td>
<td>6.5 to 8.5</td>
<td>Grab/composite**</td>
<td>Samples collected twice annually, prior to and on completion of a major irrigation event</td>
</tr>
</tbody>
</table>

* For golf courses and parks only.
** Grab sample would suffice if storage is provided; Composite sample is required if storage is not provided.

MPN – Most Probable Number
11.3.1.4 Other Requirements

Table 11.7 provides guidelines for interpretations of water quality for irrigation.

Table 11.7 Guidelines for Interpretations of Water Quality for Irrigation

<table>
<thead>
<tr>
<th>Potential irrigation problem</th>
<th>Units</th>
<th>Degree of restriction on use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salinity (affects crop water availability)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EC<sub>w</sub></td>
<td>dS/m or mmho/cm</td>
<td>< 0.7</td>
</tr>
<tr>
<td>TDS</td>
<td>mg/l</td>
<td>< 450</td>
</tr>
<tr>
<td>Permeability (affects irrigation rate of water into the soil. Evaluate using EC<sub>w</sub> and SAR or adj R<sub>Na</sub> together)<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>adj R<sub>Na</sub> = 0 - 3</td>
<td>and EC<sub>w</sub> ≥ 0.7</td>
<td>0.7 – 0.2</td>
</tr>
<tr>
<td>3 – 6</td>
<td>≥ 1.2</td>
<td>1.2 – 0.3</td>
</tr>
<tr>
<td>6 – 12</td>
<td>≥ 1.9</td>
<td>1.9 – 0.5</td>
</tr>
<tr>
<td>12 – 20</td>
<td>≥ 2.9</td>
<td>2.9 – 1.3</td>
</tr>
<tr>
<td>20 – 40</td>
<td>≥ 5.0</td>
<td>5.0 – 2.9</td>
</tr>
<tr>
<td>Specific ion toxicity (affects sensitive crops):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface irrigation</td>
<td>SAR</td>
<td>< 3.0</td>
</tr>
<tr>
<td>Sprinkler irrigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface irrigation</td>
<td>mg/L</td>
<td>< 140</td>
</tr>
<tr>
<td>Sprinkler irrigation</td>
<td>mg/L</td>
<td>< 100</td>
</tr>
<tr>
<td>Boron (B)</td>
<td>mg/L</td>
<td>< 0.7</td>
</tr>
</tbody>
</table>

Trace Elements (See Table 10.5)

Miscellaneous effects (affects susceptible crops):

b – For treated effluent irrigation, it is recommended that SAR be adjusted to include a more correct estimate of calcium in the soil water.
c – Overhead sprinkling only.

11.3.2 Assessment of Land Suitability for Proposed Treated Effluent Irrigation Development

Land classification and other relevant soil, climate, climate change, and groundwater assessment activities are generally performed after completing the comprehensive treated effluent characterization assessment, and results of the treated effluent characterization have shown that the wastewater is suitable for irrigation.

Careful assessment and characterization of the land base including associated soil, groundwater, and other crop related inputs are required prior to proceeding with actual design of the treated effluent irrigation system. A site is classed as suitable for treated effluent application only if it is found to possess soil, climatic, and physical characteristics that enable effective utilization of the treated effluent applied without causing future damage to
the land base or to the underlying groundwater. Site conditions must also be such that they effectively restrict any detrimental offsite movement of the treated effluent through leaching, groundwater migration, surface runoff, or drift from irrigation spray. The following sections outline land classification, soil, and other testing requirements that must be addressed prior to actual development of an applicable treated effluent irrigation system design and issuance of the authorized approval.

11.3.2.1 Site Suitability
Before treated effluent irrigation, development can proceed, the lands to be irrigated must first be reviewed and approved by the regulatory agencies having jurisdiction.

For purposes of the regulatory review, the following information shall be provided:
- A map showing the location of all soil sampling, description of sites, and surrounding activities or uses;
- A copy of all soil logs;
- A copy of soil chemical and physical analysis completed for the classification;
- A legible soil map that shows the soil description for the affected areas;
- A drafted land classification map at a scale of 1:5000 showing the land class symbol, drainability and limitations for each unit classified; and
- A remark sheet or report that accompanies the land classification map. The typed report shall briefly describe each land class unit with regard to the type of soils, soil texture, irrigation suitability, suitability for gravity or sprinkler irrigation development, the limitations of the irrigable units and reasons why non-irrigable units are rated non-irrigable. A statistical summary table that shows the following, where applicable, shall also be included: total irrigable acres; total non-irrigable acres; right-of-way and easement acres; not investigated acres; and acres of farmsteads or other physical features that are present.

Municipal treated effluent has much higher nitrate levels than other irrigation water sources. It is, therefore, necessary to further restrict treated effluent application on lands where the natural water table is less than 1 m below ground surface and/or impermeable bedrock or other geological barriers exist at less than 1 m below ground surface.

The following soil and site characterization details must also be collected and reported, in addition to completing the required land classification designations and mapping.

11.3.2.1.1 Soil Assessment
Soil assessment involves examination of test pits and testing of soil permeability.

1. Test Pits
Test pits provide information about the soil profile at the proposed location of the irrigation system. This information must include the following:
- Organic layer
- Total soil depth
- Effective soil depth
- Total depth of test pit
- Root penetration
- Depth to bedrock
- Depth to layer of soil with unacceptable permeability
- Determination of highest seasonal water table
 - Presence and depth of mottling
 - Depth to water
 - Moisture content (saturated, moist, dry, etc.)
- Perched water table

- Soil profile:
 - Description of soil (including all soil from unacceptably high to unacceptably low)
 - Depth of each layer
 - Texture of soil
 - Moisture content (saturated moist, dry, etc.)
 - Density (loose, medium, compact, tight)
 - Colour
 - Structure

For safety, the pit should be more than 1.2 m deep, with sloping sides and an entrance ramp for easy access and escape in the event of a soil slide. All soil removed from the pit should be placed a minimum of 1 m from the edge of the pit. If the pit is dug by backhoe and verification of subsoil conditions is required, the pit may be taken to a greater depth, but inspection should be carried out from the surface with the aid of samples of soil recovered by the machine bucket. A soil profile can then be recorded based on the variation in soil characteristics with depth.

All test pits must be dug in compliance with the regulatory agency having jurisdiction.

2. In-situ Permeability Tests

In-situ permeability tests can be used to confirm the estimation of soil permeability based on the visual assessment of soil properties in the test pit. When using these tests to verify results, a minimum of three tests should be done. If the tests are not of similar order of magnitude, more tests should be conducted.

These tests may also be used for the:
- Determination of particular sandy gravel as a soil with acceptable or unacceptably high permeability.
- Determination of a particular soil as an unacceptably low or an impermeable soil.
- Confirmation of visual assessment of soils for higher flow systems, such as commercial and institutional buildings.

11.3.2.1.2 Soil Properties

Some soil properties that are useful in assessing soil suitability include: texture, structure, colour, density and depth.

A soils consulting engineer should assess the soil results and make recommendations.

11.3.2.1.3 Topography

Topographic features such as relief, site and shape of fields, soil type and texture, brush/tree cover, and surface drainage features must be evaluated for site suitability. Land may not be considered suitable for irrigation due to one or a combination of factors such as: steep slopes, hummocky relief, brush/tree cover, small or irregular shape, sloughs, wetlands, and rough broken topography.

The topography is to be classified as to its suitability for treated effluent irrigation. The topography at each site is also to be mapped. This topographic mapping should be provided at a level of detail not less than a scale of 1:10,000 and a contour interval of 0.5m. The information should be gathered either from a topographic survey of the land parcel or from a suitable scaled orthophoto or photogrammetric mapping of the property. This mapping must reference grid and property boundaries, treated effluent irrigation development boundaries, and soil test and groundwater test site locations. Inclusion of recent stereoscopic air photo coverage at a 1:10,000 scale would be advisable, but is not a requirement.
11.3.2.2 Other Requirements

Other information in the initial site assessment process must include:

- Location and mapping of any surface water courses, water bodies, or domestic wells located on or within 150m of the treated effluent development site.
- Location and mapping of any residential dwelling on or within 400m of irrigation sites and 150m of infiltration sites.
- Location and mapping of all public roads, highways, or other public corridors on or within 30m of the treated effluent development site.

These site-specific requirements are intended to provide baseline information on all sites to be developed for treated effluent irrigation purposes. The knowledge is intended to assist in evaluating potential impacts of long-term treated effluent irrigation on the land base over time.

11.3.3 Assessment of System Design Needs for Proposed Treated Effluent Irrigation Development

Treated effluent irrigation system design is undertaken once water quality assessment and land suitability assessment are affirmed. The design integrates treated effluent quality with land base limitations and restrictions that relate to cropping, climate, climate change forecast, application, and public acceptance issues. The overall design includes an account of the following:

11.3.3.1 Climate

There are a number of climate factors that must be considered to ensure an effective treated effluent irrigation system design. These factors are defined as follows:

- Adequate storage must be provided for periods when treated effluent cannot be disposed of by irrigation due to unauthorized periods, climate condition, climate change events, wind speeds are in excess of 30 km/hr, or during periods of intense or prolonged precipitation.
- Seasonal mean precipitation, evapotranspiration and seasonal crop moisture demands must therefore be established for the infiltration or for the irrigation period authorized and be applicable to the geographical area of the specific project. These requirements will be necessary to determine the land base required to effectively dispose of the annual volumes of community wastewater available for discharge. Sufficient land to handle this anticipated flow must be obtained. Irrigation systems should be designed to have an almost complete utilization of nutrients and about 85% utilization of water. Since annual values will vary from year to year, design must allow for either a 25% treated effluent storage carry over or provision for an occasional expansion in irrigation system and land base design in order to accommodate the lower treated effluent irrigation discharge allotments required during wet years. Provision for supplemental irrigation sources in dry periods may also be considered.

11.3.3.2 Land Area

There are a number of land-related factors relevant to irrigation system design that must be considered. These factors are defined as follows:

- Specific irrigation design features must be provided that will avoid application of irrigation treated effluent to any non-irrigable land areas (greater than 15 percent of the area to be irrigated).
- The amount of land and equipment required will depend upon the mean annual consumptive use of water by plants, natural precipitation from April through September, an irrigation efficiency factor, and an appropriate leaching requirement. Climate change parameters should be considered, such as extreme precipitation events. If no provisions are provided for extra treated effluent storage during abnormally wet years, additional land areas and equipment will be required to meet these needs.
• The land area to be accumulated must also allow for any buffer zones or setback limits that apply on or around land areas where treated effluent irrigation is to be undertaken. Setbacks and buffer zones that apply are outlined in Table 11.8.

Table 11.8 Setback Requirements

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjacent Properties</td>
<td>Buffer Zone of 15 m between irrigated land and adjacent property owners. *</td>
</tr>
<tr>
<td>Adjacent Dwellings</td>
<td>Buffer Zone of a minimum of 50 m and preferred setback of 100 m between</td>
</tr>
<tr>
<td></td>
<td>irrigated land and any occupied dwellings. *</td>
</tr>
<tr>
<td>Public Rights of Way</td>
<td>Buffer Zone of a minimum of 25 m between irrigated land and any public right</td>
</tr>
<tr>
<td></td>
<td>of way.</td>
</tr>
<tr>
<td>Potable Water Wells</td>
<td>Buffer Zone of a minimum of 30 m between irrigated land and any potable</td>
</tr>
<tr>
<td></td>
<td>water well.</td>
</tr>
<tr>
<td>Watercourses, Rivers, Streams,</td>
<td>Buffer Zone of a minimum of 20 m and preferred setback of 50 m between</td>
</tr>
<tr>
<td>etc.</td>
<td>irrigated land and any watercourse. **</td>
</tr>
</tbody>
</table>

*Distance may be reduced with the signed permission of adjacent property owner.

**Watercourses used for golf course irrigation area exempt from the buffer zone. Distance may be reduced depending on the actual quality of irrigation water.

In addition to the above consideration, the land area to be used for treated effluent irrigation and storage cells shall be sufficiently large such that treated effluent discharge will not occur during the following periods.

- Outside the growing season except if authorized for a fall irrigation.
- During and for 30 days prior to the harvesting of crops.
- During and for 30 days prior to grazing by dairy cattle.
- During and for 7 days prior to pasturing by livestock other than dairy cattle.

A plan illustrating the layout of the irrigation system designed to irrigate the site shall be provided. The plan must illustrate: the boundaries of the particular section(s) within which irrigation application will take place, the boundaries of the land area to which treated effluent will be applied, the extra land area to be irrigated during wet seasons when above average mean seasonal precipitation or extreme precipitation due to climate change occurs if design for extra lagoon storage is not provided and the actual orientation of irrigation equipment, sprinkler head sizing, operating pressures and overall irrigation system layout.

11.3.3.3 Application Loading Rates

The rate of treated effluent application loading shall depend on individual crop moisture and nutrient uptake needs. These factors are defined as follows:

- Nitrogen is usually the only nutrient that may prove to be restricting in respect to the amount of treated effluent that may be applied in a given irrigation season. The amount of plant available nitrogen, based on amount of treated effluent that is applied, should be calculated and noted as kg per ha per year. As long as these rates do not exceed the annual crop nitrogen removal rates and an active crop-harvesting program exists no restrictions to the application of typical treated effluent should apply. Other major nutrients generally do not exceed annual crop uptake requirements and therefore do not pose a risk to water quality.

- Crop moisture requirements thus become the main determining factor in establishing acceptable treated effluent irrigation application limits. Annual treated effluent application amounts ultimately depend on the annual seasonal crop needs minus season rainfall or forecasted seasonal rainfall. However, other factors
such as: soil moisture holding capacity, soil infiltration rate, crop rooting depth, rate frequency and duration of irrigation event, irrigation system efficiency, and soil leaching requirements, and climate change parameters will have a bearing on the efficiency of crop moisture utilization and therefore need to be evaluated as part of any irrigation system design. A local irrigation specialist or a qualified agricultural consulting firm should be consulted to ensure accurate assessments of these values for different locations. The eventual design of the irrigation system must ensure effective uniform application of the treated effluent and prevent any surface runoff or prolonged surface ponding to occur during application. The irrigation system must also be designed to avoid treated effluent applications that exceed crop seasonal water deficit requirements and leaching demands. If natural precipitation during the irrigation off-season is not sufficient to enable leaching of excess salt accumulations, the irrigation system must account for an annual leaching factor of 10 percent. This being required to assist with flushing excess soluble salts below the crop root zone.

11.3.4 Crop Considerations
Only certain crops are deemed suitable for production on lands to be irrigated with treated effluent. Crops for direct human consumption are not suitable for effluent irrigation or infiltration. The current authorized crops include only forages, coarse grains, turf, trees and oil seeds. See section 10.3.1.4 for other considerations.

11.3.5 Treated Effluent Storage Ponds
The design of any storage reservoir required to retain treated effluent during periods of restricted irrigation must meet current design criteria as described in Chapter 7. If the pond is designed to hold treated effluent then it is not required to have an impermeable liner. Where odour problems may occur, aeration of the storage reservoir may be necessary.

11.4 System Operation
Once the wastewater development project has been approved and constructed, an Approval to Operate is required before operation can proceed. The approval will spell out operating conditions and requirements for the system.

The municipality must be responsible for the proper operation of the irrigation project, even if someone other than the municipality is actually managing the system. Proper operation of the system is essential for longevity of the system, for a high degree of treatment and for high production. Although crop production is not the prime objective of the system, a vigorous crop growth is essential for utilization of water and nutrients.

Due to the great variation in waste concentration, soils, and climate, no attempt will be made to elaborate further on irrigation management. Specific operational requirements will be stated in the approval to operate.

Operating conditions and requirements for the system must be described prior to receiving approval. Due to the great variation in waste concentration, soils, climate, and climate change projections, no attempt will be made to elaborate further on irrigation management in this document. Specific operational requirements will be stated in the certificate of approval.

11.4 Reuse of Treated Effluent for Golf Course Irrigation
Treated effluent for golf course irrigation, where acceptable to the regulatory agencies having jurisdiction, is treated to the extent that it can beneficially be reused without adverse effects of public health or the environment. Benefits of the use of treated effluent for golf course irrigation include:

- A more cost effective and environmentally beneficial alternative compared to other methods of treated effluent disposal.
• Conservation of water resources.
• Reduced demand on municipal water supply.
• Addition of nutrients and micronutrients is beneficial to turf growth.

Planning, design and management of golf course irrigation systems that use treated effluent must take the following into account:
• Regulatory concerns regarding protection of public health and the environment.
• Concerns about possible effects of treated effluent on golf course soils and vegetation.
• Cost associated with installation and operation of an irrigation system.

11.4.1 Environment

Positive environmental effects of irrigation with treated effluent include:
• Avoiding the need to discharge effluent into sensitive areas such as beaches or water supplies.
• Conservation of scarce water resources which are replaced by treated effluent.
• The nutrient content of treated effluent can provide an economic advantage by reducing the cost of commercial fertilizers.

Environmental concerns could include:
• Contamination of surface water and groundwaters by bacteria and other organisms.
• Odours associated with treated effluent may be noticeable to golfers.
• Nitrate contamination of groundwater supplies.
• Unsightly algal and weed growths in reservoirs, and ponds.

These concerns should be addressed by secondary treatment and disinfection of effluent that will be subjected to prolonged storage before it is reused for golf course irrigation.

Prolonged storage is expected to remove the slight musty smell of fresh secondary effluent, which might be noticeable and distasteful to some golfers.

Nitrogen and phosphorus are chemical nutrients that are applied as a part of turf grass management. These nutrients, usually provided by commercial fertilizers, may be replaced in part by use of treated effluent.

If nutrient application in commercial fertilizers or treated effluent is properly managed, there is little potential for unsightly and possibly odourous algal and weed growths in lakes, and ponds or of nitrate contamination of groundwater.

If nitrogen is applied at a rate that exceeds the ability of the plant and soil system to contain it or convert it to nitrogen gas, the excess nitrogen may pass through the surface soil and into groundwater. High concentrations of nitrogen, particularly in the form of nitrate, are considered a health hazard in drinking water.

If treated effluent is impounded in an open reservoir a water quality maintenance program which should include one or more of the following measures, is needed:
• Screening or filtration to remove solids, such as algal growths, to reduce maintenance of sprinkler systems.
• Control or prevention of algal growth by an algicide, or a light inhibitor such as blue dye.
• A mixing system.
• Rechlorination to maintain a residual in the distribution system.

Adequate circulation and aeration are necessary for algal and odour control. Aeration can be provided by fountains, air injection, waterfalls, or constructed wetlands.
Algae and weeds in ponds are concerns that can be addressed by assuring that nutrients in fertilizers or effluent are applied to or washed into, these bodies.

11.4.2 Soils and Vegetation

The quality of water that is applied in irrigation is an obvious concern to those responsible for management of the soils and vegetation on which a golf course depends.

Irrigation water quality parameters that are of concern include: pH, carbonate, bicarbonate, calcium, magnesium, sodium, potassium, conductivity, boron, chloride, sulphate, and adjusted SAR (Sodium Adsorption Ratio).

Bicarbonates and carbonates both increase pH, and are a source of alkalinity, which may affect the water and soil. If the total concentration of bicarbonates plus carbonates exceeds 150 mg/L the resulting increase in pH may affect nutrient availability. Options used to offset this effect include use of acid-forming nitrogen fertilizers, sulphur addition to the soil, or acid injection into the irrigation water.

The adjusted SAR is based on the ratio of sodium to calcium + magnesium in the water. Excess sodium replaces calcium on soil exchange sites, which can result in soil compaction and reduce infiltration into the soil. The usual recommendation for a SAR above 10 is application of calcium, usually a gypsum, and excess irrigation to leach the sodium.

Conductivity is a measure of total soluble salts, or salinity of the water. While most turf species used on golf courses are reasonably salt tolerant, ground covers, ornamental plants, trees and shrubs may be affected if salt concentrations are too high. There is no recommended restriction on use of irrigation water if the conductivity is less than 3 mmhos/cm.

Boron, chloride, and sulphate may be toxic to plants if concentrations are too high. Concentration of boron higher than 1 to 2 mg/L (0.33 for some ornamental plants), and of chloride plus sulphate above 250 to 400 mg/L, are considered excessive.

Other parameters that may require regular or occasional measurement are nitrogen, phosphorus, suspended solids, and heavy metals. An excess of inorganic or organic nitrogen may require careful control of fertilizer application. Phosphorus, and nitrogen, may alter the hydraulic properties of soils, or clog sprinkler head openings. If concentrations of heavy metals build up in soils they may complex with phosphorus and other elements and make them unavailable to plants.

11.4.3 Planning

The following is a Developers/Operators checklist for use of treated effluent for golf course irrigation:

- Sampling soils: sample soils well in advance of conversion to effluent, to track effects of the change; sample from difference parts of the course - tees, greens, fairways, rough; sample irrigated soil quarterly to allow for adjustment of watering schedule and use of mitigative measures.
- Water Quality: initial and periodic water analysis; verify effluent source, noting that if industrial waste is included more undesirable elements may be present; verify treatment type, more is better; establish maximum BOD, TSS and TDS levels in advance.
- Pumping and storage: considerations include – existing pumped or gravity supply need for additional pumping; form and amount of storage; need for algae control; possible use of fresh water for greens, tees, ornamental lakes and sensitive plants.
- Miscellaneous: operation, maintenance and safety issued to be considered.
• Signage: notification on course and score cards that treated effluent is being used; time of day of irrigation.

11.4.4 Design

Design considerations related to irrigation with treated effluent include:
• Screening and/or filtration of stored effluent to avoid clogging of the irrigation system.
• If acid injection is involved, consideration of corrosion effects.
• Avoidance of cross-connections between potable and non-potable water systems.
• Labelling and colour coding of non-potable pipes and equipment.
• Provision of flush valves at low spots and dead ends to allow removal of debris.
• Location of sprinkler heads to avoid contamination of drinking fountains, canteens, food and drink machines, etc.

Sprinkler head location may also have to consider contamination of, or nutrient addition to, water hazards.

Reasons for treated effluent storage include:
• To balance supply and demand.
• To supplement treated effluent with other source.
• To contain excess non-potable water.
• A combination of the above.

Seasonal storage may be required where no alternative effluent disposal method is available.

11.4.5 Management Concerns

Issues that may concern a golf course superintendent include:
• Many older greens have low infiltration rates, and require close attention to avoid turf failure, the risk of which may be increased if there is a possibility that use of treated effluent may further reduce infiltration capacity and require reconstruction of greens.
• If the level of the nutrients in the treated effluent is high, and especially if it is variable, staff will lose the ability to carefully control rates of nutrient application.
• If the application of treated effluent only at night results in a shortened application period, application rates will be increased, and the capacity of pumps and piping may be inadequate.
• If the course is committed to accept and use a certain amount of treated effluent and there is no alternative use for or disposal of water in excess of that used for irrigation, the superintendent may be forced to overwater the course (i.e., irrigation will be based on effluent disposal needs instead of proper golf course management).

Management functions include:
• Public relations: Member and player concerns that must be satisfied include odours, course appearance, legal liability, health risks, and adjacent property values.
• Design and Construction Administration: plan checking, inspection, record drawings.
• Operation and Maintenance: Monitoring and testing; staff, player, and public safety.

Chapter 12 Bio-solids Management ... 246

12.1 General .. 246
 12.1.1 Definitions³ ... 246

12.2 Sludge Treatment Process Selection ... 248

12.3 Sludge Conditioning ... 248
 12.3.1 Chemical Conditioning .. 248
 12.3.1.1 Chemical Requirements .. 248
 12.3.1.2 Laboratory Testing ... 249
 12.3.1.3 Conditioning Chemicals .. 249
 12.3.1.3.1 General .. 249
 12.3.1.3.2 Iron or Aluminum Salts ... 249
 12.3.1.3.3 Lime ... 249
 12.3.1.3.4 Polymers ... 249
 12.3.1.3.5 Chemical Feed System ... 249
 12.3.2 Heating Conditioning ... 249
 12.3.2.1 General ... 249
 12.3.2.3 Increase in Aeration Tank Organic Loading .. 250
 12.3.2.4 Design Considerations .. 250
 12.3.2.4.1 Materials ... 250
 12.3.2.4.2 Sludge Grinding ... 250
 12.3.2.4.3 Feed Pumps .. 250
 12.3.2.4.4 Heat Exchangers ... 250
 12.3.2.4.5 Reaction Vessel .. 250
 12.3.2.4.6 Hot Water Recirculation Pump ... 250
 12.3.2.4.7 Odour Control .. 250
 12.3.2.4.8 Solvent Cleaning ... 251
 12.3.2.4.9 Piping ... 251
 12.3.2.4.10 Decant Tank ... 251
 12.3.2.5 Laboratory Testing ... 251
 12.3.3 Addition of Admixtures ... 251

12.4 Sludge Thickening ... 251
 12.4.1 General .. 251
 12.4.1.1 Applicability ... 251
12.4.1.2 Multiple Units ... 252
12.4.1.3 Thickener Location ... 252

12.4.2 Thickening Methods and Performance With Various Sludge Types 252
12.4.3 Sludge Pretreatment ... 253
12.4.4 Gravity Thickening .. 253
 12.4.4.1 Process Application ... 253
 12.4.4.2 Design Criteria .. 253
 12.4.4.2.1 Tank Shape ... 253
 12.4.4.2.2 Tank Dimensions ... 253
 12.4.4.2.3 Floor Slope .. 253
 12.4.4.2.4 Solids Loading ... 253
 12.4.4.2.5 Dilution .. 253
 12.4.4.2.6 Hydraulic Overflow Rate ... 253
 12.4.4.2.7 Sludge Volume Ratio ... 254
 12.4.4.2.8 Hydraulic Retention Time .. 254
 12.4.4.2.9 Sludge Underflow Piping .. 254
 12.4.4.2.10 Chemical Conditioning ... 254
 12.4.4.2.11 Mechanical Rake ... 254
 12.4.4.2.12 Overflow Handling ... 254

12.4.1 Dissolved Air Flotation ... 254
 12.4.1.1 Applicability .. 254
 12.4.1.2 Pilot Scale Testing ... 255
 12.4.1.3 Design Parameters ... 255
 12.4.1.3.1 Recycle Ratio ... 255
 12.4.1.3.2 Air to Solids Weight Ratio ... 255
 12.4.1.3.3 Feed Concentration ... 255
 12.4.1.3.4 Hydraulic Feed Rate .. 255
 12.4.1.3.5 Solids Loading ... 255
 12.4.1.3.6 Chemical Conditioning ... 255
 12.4.1.3.7 Detention Time ... 255

12.4.1.4 Thickened Sludge Withdrawal .. 255
12.4.1.5 Bottom Sludge .. 256

12.4.2 Centrifugation .. 256
12.4.2.1 Types of Centrifuges ... 256
12.4.2.2 Applicability .. 256
12.4.2.3 Solids Recovery .. 256
12.4.2.4 Polymer Feed Range ... 256
12.4.3 Gravity Belt Thickener .. 256
12.4.3.1 Applicability ... 256
12.4.4 Rotary Drum Thickener ... 257
12.4.4.1 Applicability ... 257
12.5 Sludge Dewatering .. 257
12.5.1 General ... 257
12.5.2 Sludge Storage .. 258
12.5.3 Dewatering Process Compatibility with Subsequent Treatment or Disposal Techniques 258
12.5.4 Sludge Drying Beds ... 258
 12.5.4.1 Pre-Treatment ... 258
 12.5.4.2 Chemical Conditioning ... 259
 12.5.4.3 Design Criteria ... 259
 12.5.4.3.1 Factors Influencing Design ... 259
 12.5.4.3.2 Bed Area ... 259
 12.5.4.3.3 Percolation Type Beds .. 260
 12.5.4.3.4 Impervious Type Beds .. 260
 12.5.4.3.5 Location .. 260
 12.5.4.3.6 Winter Storage ... 260
 12.5.4.3.7 Dimensions .. 260
 12.5.4.3.8 Depth of Sludge ... 260
 12.5.4.3.9 Number of Beds .. 261
 12.5.4.3.10 Walls .. 261
 12.5.4.3.11 Sludge Influent .. 261
 12.5.4.3.12 Sludge Removal ... 261
 12.5.4.3.13 Covered Beds .. 261
12.5.5 Sludge Lagoons ... 261
 12.5.5.1 General ... 261
 12.5.5.2 Design Considerations ... 261
 12.5.5.3 Pre-Treatment ... 262
 12.5.5.4 Soil and Groundwater Conditions 262
12.5.5.5 Depth .. 262
12.5.5.6 Seal .. 262
12.5.5.7 Area .. 262
12.5.5.8 Location .. 262
12.5.5.9 Cycle Time and Sludge Removal ... 262
12.5.6 Mechanical Dewatering Facilities ... 263
12.5.6.1 General ... 263
12.5.6.2 Performance of Mechanical Dewatering Methods .. 263
12.5.6.3 Number of Units ... 263
12.5.6.4 Ventilation .. 263
12.5.6.5 Chemical Handling Enclosures.. 263
12.5.6.6 Drainage and Filtrate Disposal ... 264
12.5.6.7 Other Dewatering Facilities .. 264
12.5.6.8 Rotary Presses .. 264
12.5.6.9 Filter Presses .. 264
12.5.6.10 Solid Bowl Centrifuges .. 265
12.5.6.11 Belt Filter Presses ... 266
12.6 Sludge Pumps and Piping .. 266
12.6.1 Sludge Pumps ... 266
12.6.1.1 General Sludge Pumping Requirements .. 266
12.6.1.2 Capacity .. 267
12.6.1.3 Duplicate Units ... 267
12.6.1.4 Type .. 267
12.6.1.5 Minimum Head ... 267
12.6.1.6 Head Loss.. 267
12.6.1.7 Sampling Facilities .. 268
12.6.2 Sludge Piping .. 268
12.6.2.1 Size and Head ... 268
12.6.2.2 Slope .. 268
12.6.2.3 Supports ... 269
12.7 Sludge Stabilization ... 269
12.7.1 Anaerobic Sludge Digestion.. 269
12.7.1.1 Applicability .. 269
12.7.1.2 Digestion Tanks and Number of Stages .. 270
12.7.1.3 Access Manholes ... 270
12.7.1.4 Safety .. 270
12.7.1.5 Field Data .. 270
12.7.1.6 Typical Sludge Qualities and Generation Rates for Different Unit Processes 270
12.7.1.7 Solids Retention Time ... 271
12.7.1.8 Design of Tank Elements ... 271
 12.7.1.8.1 Digester Shape ... 271
12.7.1.9 Floor Shape ... 272
12.7.1.10 Depth and Freeboard .. 272
12.7.1.11 Scum Control ... 272
12.7.1.12 Grit and Sand Control ... 272
12.7.1.13 Alkalinity and pH Control ... 272
12.7.1.14 Mixing ... 273
12.7.1.15 Sludge Inlets, Outlets, Recirculation, and High-Level Overflow 273
 12.7.1.15.1 Multiple Inlets and Draw-Offs ... 273
 12.7.1.15.2 Inlet Configurations ... 273
 12.7.1.15.3 Inlet Discharge Location .. 273
 12.7.1.15.4 Sludge Withdrawal ... 273
 12.7.1.15.5 Emergency Overflow .. 273
12.7.1.16 Primary Tank Capacity ... 274
 12.7.1.16.1 High Rate Digester ... 274
 12.7.1.16.2 Low Rate Digester ... 274
12.7.1.17 Secondary Digester Sizing .. 274
12.7.1.18 Digester Covers ... 274
12.7.1.19 Sludge Piping ... 275
12.7.1.20 Overflows ... 275
12.7.1.21 Gas Collection, Piping and Appurtenances ... 275
12.7.1.22 General ... 275
12.7.1.23 Safety Equipment .. 275
12.7.1.24 Gas Piping and Condensate ... 275
12.7.1.25 Gas Utilization Equipment ... 276
12.7.1.26 Electrical Systems ... 276
12.7.1.27 Waste Gas ... 276
12.7.1.28 Ventilation ... 276
12.7.1.29 Meter ..276

12.7.2 Digestion Tank Heating ...276
 12.7.2.1 Heating Capacity ..276
 12.7.2.1.1 Capacity ...276
 12.7.2.2 Insulation ..277
 12.7.2.3 Heating Facilities ..277
 12.7.2.3.1 External Heating ...277
 12.7.2.3.2 Other Heating Methods ...277
 12.7.2.4 Hot Water Internal Heating Controls ..277
 12.7.2.4.1 Mixing Valves ..277
 12.7.2.4.2 Boiler Controls ..277
 12.7.2.4.3 Boiler Water Pumps ..277
 12.7.2.4.4 Thermometers ...277
 12.7.2.4.5 Water Supply ..277
 12.7.2.5 External Heater Operating Controls ..278
 12.7.2.6 Supernatant Withdrawal ..278
 12.7.2.7 Piping Size ..278
 12.7.2.8 Withdrawal Arrangement ..278
 12.7.2.8.1 Withdrawal Levels ..278
 12.7.2.8.2 Supernatant Selector ..278
 12.7.2.8.3 Withdrawal Selection ..278
 12.7.2.9 Sampling ..278
 12.7.2.10 Alternate Supernatant Disposal ...278
 12.7.2.11 Sludge Sampling Requirements ..278

12.7.3 Aerobic Sludge Digestion ..279
 12.7.3.1 Applicability ...279
 12.7.3.2 Field Data ..279
 12.7.3.3 Multiple Units ...279
 12.7.3.4 Pre-treatment ...279
 12.7.3.5 Design Considerations ..279
 12.7.3.6 Solids Retention Time ..279
 12.7.3.7 Hydraulic Retention Time ..280
 12.7.3.8 Tank Design ..280
12.7.3.9 Tank Capacity ... 280
12.7.3.10 Air and Mixing Requirements .. 280
12.7.3.11 Tank Configuration ... 280
12.7.3.12 Supernatant Separation and Scum and Grease Removal ... 281
 12.7.3.12.1 Supernatant Separation ... 281
 12.7.3.12.2 Scum and Grease Removal ... 281
12.7.3.13 High Level Emergency Overflow .. 281
12.7.3.14 Digested Sludge Storage Volume .. 281
12.7.3.15 Sludge Storage Volume ... 281
12.7.3.16 Liquid Sludge Storage .. 281
12.7.4 High PH Stabilization ... 281
 12.7.4.1 General ... 281
 12.7.4.2 Operational Criteria .. 282
 12.7.4.3 Odour Control and Ventilation .. 282
 12.7.4.4 Mixing Tanks and Equipment ... 282
 12.7.4.4.1 Tanks .. 282
 12.7.4.4.2 Equipment ... 282
 12.7.4.5 Chemical Feed and Storage Equipment .. 282
 12.7.4.5.1 General ... 282
 12.7.4.5.2 Feed and Slaking Equipment .. 282
 12.7.4.5.3 Chemical Storage Facilities ... 283
 12.7.4.6 Sludge Storage ... 283
 12.7.4.6.1 Liquid Sludge .. 283
 12.7.4.6.2 Dewatered Sludge ... 283
 12.7.4.6.3 Off-Site Storage ... 283
 12.7.4.7 Disposal ... 283
12.8 Advanced Treatment Alternatives for Pathogen Reduction ... 283
 12.8.1 Processes to Further Reduce Pathogens (PFRP) ... 283
 12.8.1.1 Composting ... 284
 12.8.1.1.1 Aerated Static Pile .. 284
 12.8.1.1.2 Windrow ... 285
 12.8.1.1.3 In-Vessel Composting Systems .. 285
 12.8.1.1.4 Design Considerations .. 285
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.8.1.1.5 Co-Composting with Solid Wastes</td>
<td>286</td>
</tr>
<tr>
<td>12.9 Sludge Recycling and Disposal Methods</td>
<td>286</td>
</tr>
<tr>
<td>12.9.1 Sludge Utilization on Land</td>
<td>286</td>
</tr>
<tr>
<td>12.9.2 Sanitary Landfill</td>
<td>286</td>
</tr>
<tr>
<td>12.9.3 Incineration</td>
<td>287</td>
</tr>
<tr>
<td>12.9.4 Land Reclamation</td>
<td>287</td>
</tr>
<tr>
<td>12.9.5 Energy/Resource Recovery</td>
<td>287</td>
</tr>
</tbody>
</table>
Chapter 12 Bio-solids Management

12.1 General

Bio-solids handling, treatment and disposal must be considered as an integral part of the overall management of sanitary sewage. The following is a summary of handling, treatment options and the various process and treatment requirements best suited to the option selected. Re-use and recovery alternatives of bio-solids are also included as disposal options. Proponents need to consult with their provincial regulatory agencies in determining the appropriate disposal method for their application.

Bio-solids are primarily organic materials produced during the treatment of domestic sewage sludge, which have been further treated (stabilized) to reduce pathogen content. Due to their nutrient content, bio-solids can be applied to land as a fertilizer or soil amendment, a process which is referred to as land application. Land application of bio-solids can be beneficial by improving crop production and soil properties, reducing requirements for inputs such as fertilizers and irrigation, reclaiming lands (strip mines, quarries, gravel pits, etc.), and enriching forest lands.

Stabilization reduces pathogen concentration, helps minimize odour generation, and reduces vector attraction potential.

12.1.1 Definitions

Aerobic Digestion – The degradation of organic matter brought about through the action of micro-organisms in the presence of oxygen for purposes of stabilization, volume reduction, and pathogen reduction.

Agricultural Land – Land on which food, feed, or fiber crops are grown. This includes range land and/or land used as pasture.

Agronomic Rate – The application rate designed to provide the amount of nutrients needed by a crop or vegetation. The goal is to match the needs so the amount of nutrient leaching into the water table can be minimized.

Alkaline Stabilization – See “lime stabilization”.

Anaerobic Digestion – The degradation of organic matter brought about through the action of micro-organisms in the absence of oxygen for purposes of stabilization and pathogen reduction. (Mesophilic operating range 35-38°C. Thermophilic operating range greater than 55°C.)

Application site – See “land application site”.

Beneficial Use – Taking advantage of the nutrient content and soil conditioning properties of a bio-solids product to supply some or all of the fertilizer needs of an agronomic crop or for vegetative cover (in land reclamation, silviculture, landfill cover, or similar ventures).

Bio-solids – An organic, stabilized material produced during the treatment of domestic sewage (some facilities may also receive commercial and industrial components) in a wastewater treatment facility or stabilization lagoon and rendered suitable for beneficial use. They include the solid, semi-solid, and liquid residue removed from primary, secondary, or advanced wastewater treatment processes, but do not include screenings and grit.
normally removed during the preliminary treatment stages of these processes. Bio-solids differ from sewage sludges in that they have been treated to reduce pathogen content.

Composting – A stabilization process where organic material undergoes biological degradation to a stable end product. Approximately 20% to 30% of the volatile solids are converted to carbon dioxide and water. Enteric pathogenic organisms are destroyed during this process.

Dewater – Increase of the solids concentration of bio-solids and sludges to a cake like consistency generally greater than 15% solids.

Heat Drying – Heat drying of bio-solids involves the supply of auxiliary heat to mechanical drying processes in order to increase the vapour holding capacity of the ambient air and to provide the latent heat necessary for evaporation (>80°C).

Heat Treatment – Heat treatment is a continuous process in which bio-solids are heated in a pressure vessel to temperatures up to 260°C for approximately 30 minutes. This serves as both a stabilization process and a conditioning process.

Land Application – The spreading of bio-solids to any one field following the agronomic rate specified in the nutrient management plan that has been prepared by a qualified nutrient management planner.

Land Application Site – An area of land (covered by an Approval) on which bio-solids are applied to condition the soil, fertilize crops, or promote vegetative growth.

Lime Stabilization – A process in which sufficient lime or other alkaline material is added to bio-solids to produce a highly alkaline sludge (pH of 12 after two hours of contact). Also called alkaline stabilization.

Nutrient – Any substance that is required for plant growth. This generally refers to nitrogen, phosphorus, potassium, and other essential and trace elements.

Nutrient Management Planner – A professional agrologist that has completed an appropriate course of study that includes nutrient management planning.

Pasteurization – The process in which bio-solids are heated to 70°C for 30 minutes to destroy pathogens.

Pathogens – Organisms such as bacteria, protozoa, viruses, and parasites causing disease in humans and animals.

Sludge – The solid, semi-solid, or liquid residue generated during the wastewater treatment process.

Soil Amendment – Anything that is added to the soil to improve its physical or chemical condition or plant growth.

Stabilize - To make the organic or volatile portion of the sludge less putrescible, less odorous, and to decrease the vector attraction potential and concentration of pathogenic microorganisms.

Stabilization Lagoon – A facultative (both aerobic and anaerobic), aerobic or anaerobic lagoon capable of degrading the organic matter in wastewater through the action of microorganisms in the presence of oxygen.
(aerobic) or absence of oxygen (anaerobic) for the purposes of stabilization, volume reduction and pathogen reduction.

Vector Attraction – The characteristic of bio-solids that attracts rodents, flies, mosquitoes, or other pests and organisms capable of transporting infectious agents, such as pathogens.

12.2 Sludge Treatment Process Selection

The selection of sludge handling unit processes should be based upon at least the following considerations:

- Regulatory requirements;
- Local land use;
- System energy requirements;
- Cost effectiveness of sludge thickening and dewatering;
- Equipment complexity and staffing requirements;
- Adverse effects of heavy metals and other sludge components upon the unit processes;
- Sludge digestion or stabilization requirements, including appropriate pathogen & vector attraction reduction;
- Side stream or return flow treatment requirements (e.g., digester or sludge storage facilities supernatant, dewatering unit filtrate, wet oxidation return flows);
- Sludge storage requirements;
- Methods of ultimate disposal; and
- Back-up techniques of sludge handling and disposal.

12.3 Sludge Conditioning

Sludge thickening and dewatering operations (depending on the process used), are highly dependent on sludge conditioning for their effective operation. Sludge conditioning affects the solids concentration of the thickened or dewatered sludge, as well as the capture efficiency. There are two approaches that can be used. Sludge can be conditioned by chemical methods, including the addition of coagulants and/or polymers, or by physical methods such as heat treatment or the addition of fly ash. The method will not only differ in its effect on the thickening or dewatering process, but will have different effects on subsequent sludge handling operations, and on the treatment facility itself due to recycle streams.

12.3.1 Chemical Conditioning

12.3.1.1 Chemical Requirements

Chemical conditioning methods involve the use of organic or inorganic flocculants to promote the formation of a porous, free draining cake structure. The ranges of some chemical conditioning requirements are outlined in Table 12.1.

Table 12.1 Some Chemical Conditioning Requirements

<table>
<thead>
<tr>
<th>Sludge</th>
<th>FeCl₃ (kg/tonne Dry Solids)</th>
<th>Ca(OH)₂ (kg/tonne Dry Solids)</th>
<th>Polymers (kg/tonne Dry Solids)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP</td>
<td>10 - 30</td>
<td>0 - 150</td>
<td>1.5 - 2.5</td>
</tr>
<tr>
<td>R(P + TF)</td>
<td>30 - 60</td>
<td>0 - 150</td>
<td>2 - 5</td>
</tr>
<tr>
<td>R(P + AS)</td>
<td>40 - 80</td>
<td>0 - 150</td>
<td>3 - 7.5</td>
</tr>
<tr>
<td>AS</td>
<td>60 - 100</td>
<td>50 - 1500</td>
<td>4 - 12.5</td>
</tr>
<tr>
<td>DP</td>
<td>20 - 30</td>
<td>30 - 80</td>
<td>1.5 - 4</td>
</tr>
<tr>
<td>D(P + TF)</td>
<td>40 - 80</td>
<td>50 - 150</td>
<td>3 - 7.5</td>
</tr>
<tr>
<td>D(P + AS)</td>
<td>60 - 100</td>
<td>50 - 150</td>
<td>3 - 10</td>
</tr>
</tbody>
</table>
12.3.1.2 Laboratory Testing
The selection of the most suitable chemical(s) and the actual dosage requirements for sludge conditioning should be determined by a combination of pilot and full-scale testing & optimization.

Laboratory testing should only be used to narrow down the selection process and to arrive at approximate dosage requirements. Generally, laboratory testing will yield dosage requirements within 15 percent of full-scale needs.

12.3.1.3 Conditioning Chemicals
12.3.1.3.1 General
With most thickening operations and with belt filter press dewatering operations the most commonly used chemicals are polymers. For dewatering by vacuum filtration, ferric salts, often in conjunction with lime, are most commonly used. For centrifuge dewatering, chemical conditioning using polymers is most prevalent, with metal salts being avoided mainly due to corrosion problems. The ultimate disposal methods may also have an effect on the choice of conditioning chemicals. For instance, lime and ferric compounds should be avoided with incineration options.

12.3.1.3.2 Iron or Aluminum Salts
Most raw sludges can be filtered with ferric salts alone, although digested sludge will require the addition of lime with the ferric salt. The lime: ferric chloride ratio is typically 3:1 to 4:1 for best results. If metallic salts are used without lime, the resulting low pH sludge will be highly corrosive to carbon steel and should require materials such as plastic, stainless steel, or rubber for proper handling.

12.3.1.3.3 Lime
Hydrated limes, both the high calcium and dolomitic types, can be used for sludge conditioning in conjunction with metal salts or alone.

12.3.1.3.4 Polymers
Polymers used for sludge conditioning are long-chain water-soluble organic molecules of high molecular weight. They are used in wastewater suspensions to cause flocculation through adsorption. Equipment for polymer addition must be able to withstand potential corrosion.

12.3.1.3.5 Chemical Feed System
The chemical feed system should be paced at the rate of sludge flow to the dewatering unit. The chemical feed system should be either close to the dewatering unit or controllable from a point near the dewatering unit. Sufficient mixing should be provided so as to disperse the conditioner throughout the sludge. The chemical feed rates should allow for at least a 10:1 range of chemical flow to the dewatering unit.

12.3.2 Heating Conditioning
12.3.2.1 General
Heat conditioning of sludge consists of subjecting the sludge to high levels of heat and pressure. Heat conditioning can be accomplished by either a non-oxidative or oxidative system. The high temperatures cause...
hydrolysis of the encapsulated water-solids matrix and lysing of the biological cells. The hydrolysis of the water matrix destroys the gelatinous components of the organic solids and thereby improves the solid-liquid separation characteristics.

12.3.2.2 Operating Temperatures and Pressures
Typical operating temperatures range from 175 to 205°C. Operating pressures range from 1,700 to 2,800 kPa. Typical sludge detention times vary between 15 and 40 minutes.

12.3.2.3 Increase in Aeration Tank Organic Loading
Although the heat conditioning system has been proven to be an effective sludge conditioning technique for subsequent dewatering operations, the process results in a significant organic loading to the biological treatment process of the sewage treatment plant if supernatant is returned to the bioreactor. This is due to the solubilization of organic matter during the sludge hydrolysis. This liquor can represent 25 to 50 percent of the total loading on the secondary treatment process and allowances must be made in the treatment plant design to accommodate this loading increase.

12.3.2.4 Design Considerations
12.3.2.4.1 Materials
Heat conditioning results in the production of extremely corrosive liquids requiring the use of corrosion-resistant materials for the liquid handling.

12.3.2.4.2 Sludge Grinding
Sludge grinders should be provided to macerate the sludge to a particle size less than 6 mm to prevent fouling of the heat exchangers.

12.3.2.4.3 Feed Pumps
Feed pumps should be capable of discharging sludge at pressures of 1,400 to 2,800 kPa and must be resistant to abrasion.

12.3.2.4.4 Heat Exchangers
The efficiency of the heat exchangers is dependent on the transfer coefficients and the temperature differences of the incoming and outgoing sludges.

12.3.2.4.5 Reaction Vessel
The reaction vessel should be of sufficient volume to provide for a sludge detention time of 15 to 40 min. The detention time depends on the sludge characteristics, temperature and the level of hydrolysis required.

12.3.2.4.6 Hot Water Recirculation Pump
The hot water recirculation pump should be capable of handling hot water at the maximum design temperature.

12.3.2.4.7 Odour Control
Heat conditioning, particularly the non-oxidative process, can result in the production of odorous gases in the decant tank. If ultimate sludge disposal is via incineration, these gases can be incinerated in the upper portion of the furnace. If incineration is not a part of the sludge handling process, a catalytic or other type of oxidizing unit should be used.
12.3.2.4 Solvent Cleaning
Scale formation in the heat exchangers, pipes and reaction vessel require acid washing equipment to be provided.

12.3.2.4.9 Piping
All the high pressure piping for the sludge heat conditioning system should be tested at a pressure of 3,500 kPa. Low pressure piping should be tested at 1.5 times the working pressure or 1,400 kPa, whichever is greater.

12.3.2.4.10 Decant Tank
The decant tank functions as a storage and sludge consolidation unit. The tank should be covered and provided with venting and a deodorization arrangement. The tank should be designed using loadings of 245 kg/m2·d for primary sludge and 145 kg/m2·d for biological sludges. The underflow will range from 1.0 to 1.5 percent TS.

12.3.2.5 Laboratory Testing
Since process efficiency is dependent on achieving a degree of solubilization (hydrolysis) that reduces the specific resistant to an acceptable range, batch testing with a laboratory autoclave should be employed. This procedure permits accurate control of the time and temperature functions affecting the level of hydrolysis. The level of solubilization is determined from the loss of TSS during heat treatment.

12.3.3 Addition of Admixtures
Another common form of physical conditioning is the addition of admixtures such as fly ash, incinerator ash, diatomaceous earth, or waste paper. These conditioning techniques are most commonly used with filter presses. The admixtures when added in sufficient quantities produce a porous lattice structure in the sludge which results in decreased compressibility and improved filtering characteristics. When considering such conditioning techniques, the beneficial and detrimental effects of the admixture on such parameters as overall sludge mass, calorific value, etc., must be evaluated along with the effects on improved solids content.

12.4 Sludge Thickening
12.4.1 General
12.4.1.1 Applicability
As the first step of sludge handling, the need for sludge thickeners to reduce the volume of sludge should be considered.

The design of thickeners (gravity, dissolved-air flotation, centrifuge and others) should consider the type and concentration of sludge, the sludge stabilization processes, storage requirements, the method of ultimate sludge disposal, chemical needs and the cost of operation. Particular attention should be given to the pumping and piping of the concentrated sludge and possible onset of anaerobic conditions. Sludge thickening to at least 5% solids prior to transmission to digesters should be considered.

Wherever possible, pilot-plant and/or bench-scale data should be used for the design of sludge thickening facilities. With new plants, this may not always be possible and, in such cases, empirical design parameters must be used. The following subsections outline the normal ranges for the design parameters of such equipment.

In considering the need for sludge thickening facilities, the designer should evaluate the economics of the overall treatment processes, with and without facilities for sludge water content reduction. This evaluation should consider both capital and operating costs of the various plant components and sludge disposal operations affected.
12.4.1.2 Multiple Units
With sludge thickening equipment, multiple units will generally be required unless satisfactory sludge storage facilities or alternate sludge disposal methods are available for use during periods of equipment repair. Often the need for full standby units will be unnecessary if the remaining duty units can be operated for additional shifts in the event of equipment breakdown.

12.4.1.3 Thickener Location
Sludge thickening can be employed in the following locations in a sewage treatment plant:
- Prior to digestion for raw primary, secondary sludge or mixed sludges;
- Prior to dewatering facilities;
- Following digestion for sludges or supernatant; or
- Following dewatering facilities for concentration of filtrate, decant, centrate, etc.

Where thickeners are to be housed, ventilation and electrical requirements must be consistent with the area classification as determined by the latest version of NFPA 820.

12.4.2 Thickening Methods and Performance With Various Sludge Types
The commonly employed methods of sludge thickening and their suitability for the various types of sludge are shown in Table 12.2. In selecting a design figure for the thickened sludge concentration, the designer should keep in mind that all thickening devices are adversely affected by high Sludge Volume Indices (SVI’s) and benefited by low SVI’s in the waste activated sludge. Thickening targets should also consider digestion needs. For example, pre-thickening prior to aerobic digestion can lead to odour and foaming issues. The ranges of thickened sludge concentrations given in Table 12.2 assume an SVI of approximately 100.

Table 12.2 Sludge Thickening Methods and Performance with Various Sludge Types

<table>
<thead>
<tr>
<th>Thickening Method</th>
<th>Sludge Type</th>
<th>Performance Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>Raw Primary</td>
<td>Good, 8-10% Solids</td>
</tr>
<tr>
<td></td>
<td>Raw Primary and Waste Activated</td>
<td>Poor, 5-8% Solids</td>
</tr>
<tr>
<td></td>
<td>Waste Activated</td>
<td>Very Poor, 2-3% Solids (Better results reported for oxygen excess activated sludge)</td>
</tr>
<tr>
<td></td>
<td>Digested Primary</td>
<td>Very Good, 8-14% Solids</td>
</tr>
<tr>
<td></td>
<td>Digested Primary and Waste Activated</td>
<td>Poor, 6-9% Solids</td>
</tr>
<tr>
<td>Dissolved Air Flotation</td>
<td>Waste Activated (Not generally used for other sludge types)</td>
<td>Good, 4-6% Solids and ≥95% Solids Capture with Flotation Aids</td>
</tr>
<tr>
<td>Centrifugation</td>
<td>Waste Activated</td>
<td>8-10% and 80-90% Solids Capture with Basket Centrifuges; 4-6% and 80-90% Solids Capture with Disc-nozzle Centrifuges; 5-8% and 70-90% Solids Capture with Solid Bowl Centrifuges</td>
</tr>
</tbody>
</table>
12.4.3 Sludge Pretreatment
Wherever thickening devices are being installed, special consideration must be given to the need for sludge pre-treatment in the form of sludge grinding to avoid plugging pumps, lines and thickening equipment. Sludge conditioning by chemical conditioning is also considered as a type of pre-treatment.

12.4.4 Gravity Thickening

12.4.4.1 Process Application
Gravity thickening is primarily used for primary sludge, and mixtures of primary and waste activated sludges. Due to the better performance of other methods for waste activated sludges, gravity thickening has limited application for such sludges.

12.4.4.2 Design Criteria
12.4.4.2.1 Tank Shape
The gravity thickener should be circular in shape.

12.4.4.2.2 Tank Dimensions
Typical tank diameters should range between 21 and 24 m. Sidewater depth should be between 3 and 3.7 m.

12.4.4.2.3 Floor Slope
The acceptable range for gravity sludge thickener floor slopes is 2:12 to 3:12.

12.4.4.2.4 Solids Loading
The type of sludge should govern the design value for solids loading to the gravity thickener. Table 12.3 outlines recommended solids loading values.

<table>
<thead>
<tr>
<th>Type of Sludge</th>
<th>Solids Load (kg/m²-day) Acceptable Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>95-120</td>
</tr>
<tr>
<td>Waste Activated</td>
<td>12-40</td>
</tr>
<tr>
<td>Modified Activated</td>
<td>50-100</td>
</tr>
<tr>
<td>Trickling Filter</td>
<td>40-50</td>
</tr>
</tbody>
</table>

Solids loading for any combination of primary sludge and waste activated sludge should be based on a weighted average of the above loading rates.

Use of metal salts for phosphorus removal may affect the solids loading rates.

12.4.4.2.5 Dilution
Improved thickening is achieved by diluting sludge to 0.5 to 1% solids because that dilution reduces the interface between the settling particles. Primary sewage effluent or secondary effluent may be utilized to dilute sludge before thickening.

12.4.4.2.6 Hydraulic Overflow Rate
The hydraulic overflow rate should be kept sufficiently high to prevent septic conditions from developing in the thickener. The acceptable ranges for overflow rates are as follows:
Primary Sludge 0.28-0.38 L/m²·s
Secondary Sludge 0.22-0.34 L/m²·s
Mixture 0.25-0.36 L/m²·s

12.4.4.2.7 Sludge Volume Ratio
The Sludge Volume Ratio (SVR) is defined as the volume of the sludge blanket divided by the daily volume of sludge (underflow) pumped from the thickener. Though deeper sludge blankets and longer SVR are desirable for maximum concentrations, septic conditions due to anaerobic biodegradation on warmer months limit the upper values of SVR to about 1 day.

Recommended SVR values range is 0.3 to 1 day during warmer months and 0.5 to 2 days during colder months.

12.4.4.2.8 Hydraulic Retention Time
A minimum of 6 hrs. of hydraulic retention time is required. For maximum compaction of the sludge blanket, 24 hrs. is recommended.

During peak conditions, the retention time may have to be shortened to keep the sludge blanket level below the overflow weirs, thus, preventing excessive solids carry-over.

12.4.4.2.9 Sludge Underflow Piping
The length of suction lines should be kept as short as possible. Consideration should be given to the use of dual sludge withdrawal lines.

12.4.4.2.10 Chemical Conditioning
Provision should be made for the addition of conditioning chemicals into the sludge influent lines (polymers, ferric chloride or lime are the most likely chemicals to be used to improve solids capture).

12.4.4.2.11 Mechanical Rake
The mechanical rake should have a tip speed of 50 to 100 mm/s. The rake should be equipped with hinged-lift mechanisms when handling heavy sludges such as lime treated primary sludge. The use of a surface skimmer is recommended.

12.4.4.2.12 Overflow Handling
The normal quality of thickener overflow (also known as thickener overhead or supernatant) is about the same as raw sewage quality. Consequently, returning the overflow to primary settling tank or aeration tank should not present any operational problem.

Direct recycling of thickener overflow to the grit chamber, primary settling tank, trickling filter, RBC or aeration tank is permitted. The supernatant should not be discharged into the secondary settling tank, disinfection tank, sewer outfall, or receiving water.

12.4.1 Dissolved Air Flotation

12.4.1.1 Applicability
Unlike heavy sludges, such as primary and mixtures of primary and waste activated sludges, which are generally most effectively thickened in gravity thickeners, light waste activated sludges can be successfully thickened by Dissolved Air Flotation (DAF). In general, air flotation thickening can be employed whenever particles tend to float rather than sink. These procedures are also applied if the materials have a long subsidence period and resist compaction for thickening by gravity.
The advantages of air flotation compared with gravity thickeners for waste activated sludges include its reliability, production of higher sludge concentrations, and better solids capture. Its disadvantages include the need for greater operating skill and higher operating costs.

12.4.1.2 Pilot Scale Testing
Experience has shown that flotation operations cannot be designed on the basis of purely mathematical formulations or by the use of generalized design parameters, and therefore some bench-scale and/or pilot-scale testing will be necessary.

12.4.1.3 Design Parameters
The following design parameters are given only as a guide to indicate the normal range of values experienced in full-scale operations.

12.4.1.3.1 Recycle Ratio
The recycle ratio varies with suppliers and typically falls between 0 and 500% of the influent flow. Recycled flows may be pressurized up to 520 kPa.

12.4.1.3.2 Air to Solids Weight Ratio
Typical air to solids weight ratios should be between 0.02 and 0.05.

12.4.1.3.3 Feed Concentration
Feed concentration of activated sludge (including recycle) to the flotation compartment should not exceed 5,000 mg/L.

12.4.1.3.4 Hydraulic Feed Rate
Where the hydraulic feed rate includes influent plus recycle, the flotation units should be designed hydraulically to operate in the range of 0.3 to 1.5 L/m²·s. A maximum hydraulic loading rate of 0.5 L/m²·s should be adhered to when no coagulant aids are used to improve flotation. The feed rate should be continuous rather than on-off.

12.4.1.3.5 Solids Loading
Without any addition of flocculating chemicals, the solids loading rate for activated sludge to a flotation unit should be between 40 and 100 kg/m²·d. With the proper addition of flocculating chemicals, the solids loading rate may be increased to 240 kg/m²·d. These loading rates will generally produce a thickened sludge of 3 to 5 percent total solids.

12.4.1.3.6 Chemical Conditioning
Chemicals should be fed directly to the mixing zone of the feed sludge and recycle flow. Most installations use chemical conditioning with polymers to achieve provide more economical operation. Polymer feed rate in the range of 0 to 25 g/kg of dry solids.

12.4.1.3.7 Detention Time
Detention time is not critical provided particle rise rate is sufficient and horizontal velocity in the unit does not produce scouring of the sludge blanket.

12.4.1.4 Thickened Sludge Withdrawal
The surface skimmer should move thickened sludge over the dewatering beach into the sludge hopper. Either positive displacement, or centrifugal pumps which will not air bind should be used to transfer sludge from the
hopper to the next phase of the process. When selecting pumps, the maximum possible sludge concentrations should be taken into consideration.

12.4.1.5 Bottom Sludge
A bottom collector to move settled sludge into a hopper must be provided. Sludge removal from the hopper may be by gravity or pumps.

12.4.2 Centrifugation

12.4.2.1 Types of Centrifuges
Three types of centrifuges may be utilized for sludge thickening. These include the solid bowl conveyor, disc-nozzle and basket centrifuges.

12.4.2.2 Applicability
To date, there has been limited application of centrifuges for sludge thickening, despite their common use for sludge dewatering. As thickening devices, their use has been generally restricted to waste activated sludges.

General design considerations are as follows:
- Centrifugal thickening operations can have substantial maintenance and operating costs;
- Where space limitations, or sludge characteristics make other methods unsuitable, or where high-capacity mobile units are needed, centrifuges have been used;
- Thickening capacity, thickened sludge concentration and solids capture of a centrifuge are greatly dependent on the SVI of the sludge;
- Early experience with disc nozzle-type centrifuges found that clogging of sludge discharge nozzles resulted in frequent maintenance, recently pre-treatment has helped to alleviate these concerns; and
- Basket type centrifuges have seen limited use due to their low capacity & batch operation, and as such their use has been restricted to small facilities.

12.4.2.3 Solids Recovery
The most suitable operating range is generally 85 – 95% solids recovery.

12.4.2.4 Polymer Feed Range
A polymer feed range of 0 to 4.0 g/kg of dry solids is generally acceptable.

12.4.3 Gravity Belt Thickener

12.4.3.1 Applicability
Gravity Belt Thickeners (GBTs) have been used on both primary, waste activated, and mixtures of primary & waste activated sludges. Their use stems from the application of Belt Filter Presses for sludge dewatering.

General design considerations as follows:
- Performance of the GBTs is subject to upstream conditions at the treatment facility, the better the settling of solids at the facility, the better the GBT will function and potentially at lower chemical dosages;
- Adequate attention should be given to transporting the thickened solids, in particular for handling the maximum solids content expected;
- Prior to digestion, adequate mixing or blending of thickened solids with other solids is required;
- Plows on the gravity belt turn and distribute the thickened solids to allow for water to drain through the belt fabric. The number and location should be adjustable for each type of sludge being thickened;
- Chemical addition and mixing equipment are important, as are multiple injection points;
- GBTs should have an air handling system to maintain a safe working environment; this could include a
complete enclosure with exhaust, odour control, inspection door, and access for cleaning;
- GBTs should have a curb around them and floors sloped to drains so that operators can properly clean the equipment;
- Metering of solids into and out of the equipment is important;
- Thickened solids need to be designed to move all expected material and avoid accumulation and overload;
- Due to height of equipment, an elevated walkway will probably be needed to operate and maintain the equipment; and
- Scum (grease) should not be placed on the GBT because blinding of the fabric can create problems.

12.4.4 Rotary Drum Thickener

12.4.4.1 Applicability

Rotary Drum Thickeners (RDTs) have been used on both primary, waste activated, and mixtures of primary & waste activated sludges.

Design considerations are similar to GBTs.

12.5 Sludge Dewatering

12.5.1 General

Sludge dewatering will often be required at sewage treatment plants prior to ultimate disposal of sludges or as a prelude to further treatment or stabilization. Since the processes differ significantly in their ability to reduce the water content of sludges, the ultimate sludge disposal method will generally have a major influence on the dewatering method most suitable for a particular sewage treatment plant. Also of influence will be the characteristics of the sludge requiring dewatering, that is, whether the sludge is raw or digested, whether the sludge contains waste activated sludge, or whether the sludge has been previously thickened. With raw sludge, the freshness of the sludge will have a significant effect on dewatering performance (septic sludge will be more difficult to dewater than fresh raw sludge).

Similar to thickening systems, dewatering facilities may require sludge pre-treatment in the form of sludge grinding to avoid plugging pumps, lines and plugging or damaging dewatering equipment. Ventilation and electrical requirements must be consistent with the area classification as determined by the latest version of NFPA 820.

In evaluating dewatering system alternatives, the designer must consider the capital and operating costs, including labour, parts, chemicals and energy, for each alternative as well as for the effects which each alternative will have on the sewage treatment and subsequent sludge handling and ultimate sludge disposal operations.

In considering the need for sludge dewatering facilities, the designer should evaluate the economics of the overall treatment processes, with and without facilities for sludge water content reduction. This evaluation should consider both capital and operating costs of the various plant components and sludge disposal operations affected.

Wherever possible, pilot-plant and/or bench-scale data should be used for the design of dewatering facilities. With new plants, this may not always be possible and, in such cases, empirical design parameters must be used. The following subsections outline the normal ranges for the design parameters of such equipment.

For calculating dewatering design sludge handling needs, a rational basis of design for sludge production from sludge stabilization processes should be developed and provided to the regulatory agencies for approval on a
case-by-case basis. In lieu of actual sludge production data, an overall mass balance should be prepared to account for anticipated sludge production from each unit process, including the recycle streams.

12.5.2 Sludge Storage

Sludge storage facilities should be provided at all mechanical treatment plants. Appropriate storage facilities may consist of any combination of drying beds, lagoons, separate tanks, additional volume in sludge stabilization units, pad area or other means to store either liquid or dried sludge.

The design should provide for odour control in sludge storage tanks and lagoons including aeration, covering or other appropriate means.

Calculations to establish the number of days of storage should be carried out based on the overall sludge handling and disposal methodology.

12.5.3 Dewatering Process Compatibility with Subsequent Treatment or Disposal Techniques

Table 12.4 outlines the relationship of dewatering to other processes.

Table 12.4 The Relationship of Dewatering to Other Sludge Treatment Processes for Typical Municipal Sludges

<table>
<thead>
<tr>
<th>Method</th>
<th>Pretreatment Normally Provided</th>
<th>Normal Use of Dewatered Cake</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thickening</td>
<td>Conditioning</td>
</tr>
<tr>
<td>Rotary Press</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Centrifuge (solid bowl)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Centrifuge (basket)</td>
<td>Variable</td>
<td>Variable</td>
</tr>
<tr>
<td>Drying beds</td>
<td>Variable</td>
<td>Not Usually</td>
</tr>
<tr>
<td>Lagoons</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Filter presses</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Horizontal belt filters</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

12.5.4 Sludge Drying Beds

12.5.4.1 Pre-Treatment

Sludge should be pre-treated before being air-dried by either one of the following methods:
- Anaerobic digesters;
- Aerobic digesters with provision to thicken;
- Digestion in aeration tanks of extended aeration plants (with long sludge age, greater than about 20 days) preferably with provision to thicken using thickeners, lagoons or by other means; or
- Well designed and maintained oxidation ditches with sludge age longer than about 20 days (preferably after thickening).
12.5.4.2 Chemical Conditioning
The dewatering characteristics can be considerably improved by chemical conditioning of sludge prior to treatment in beds.

Since sludge conditioning can reduce the required drying time to 1/3 or less, of the unconditioned drying time, provision should be made for the addition of conditioning chemicals, usually polymers.

12.5.4.3 Design Criteria
12.5.4.3.1 Factors Influencing Design
The design and operation of sludge drying beds depend on the following factors:
- Climate and climate change projections in the area;
- Sludge characteristics;
- Pre-treatment (such as conditioning, thickening, etc.); and
- Sub-soil permeability.

12.5.4.3.2 Bed Area
Consideration should be given to the following when calculating the bed area:
- The volume of wet sludge produced by existing and proposed processes.
- Dosing depth: For design calculation purposes a maximum depth of 200 mm should be utilized. For operational purposes, the depth of sludge placed on the drying bed may increase or decrease from the design depth based on the percent solids content, type of digestion utilized, and seasonal variations.
- Total digester volume and other wet sludge storage facilities.
- Degree of sludge thickening provided after digestion.
- The maximum depth of sludge which can be removed from the digester or other sludge storage facilities without causing process or structural problems.
- The time required on the bed to produce a removable cake. Adequate provision should be made for sludge dewatering and/or sludge disposal facilities for those periods of time during which outside drying of sludge on beds in hindered by weather.
- Capacities of auxiliary dewatering facilities.

Sludge drying beds may be designed from basic principles, laboratory tests, and/or pilot plant field studies. Calculations must be presented to the reviewing authority supporting any design based on the above methods. In the absence of such calculations the minimum sludge drying bed area shall be based on the criteria presented in Table 12.5.

Table 12.5 Sludge Drying Bed Areas

<table>
<thead>
<tr>
<th>Type of Wastewater Treatment</th>
<th>Area (m²/capita)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Open Beds</td>
</tr>
<tr>
<td>Primary Plants (No secondary treatment)</td>
<td>0.12</td>
</tr>
<tr>
<td>Activated Sludge (No primary treatment)</td>
<td>0.16</td>
</tr>
<tr>
<td>Primary and Activated Sludge</td>
<td>0.20</td>
</tr>
</tbody>
</table>

The area of the bed may be reduced by up to 50% if it is to be used solely as a back-up dewatering unit. An increase of bed area by 25% is recommended for paved beds.
12.5.4.3.3 Percolation Type Beds

Pond Bottom
The bottom of the cell should be of impervious material such as clay or asphalt.

Underdrains
Underdrains should be at least 100 mm in diameter laid with open joints. Perforated pipe may also be used. Underdrains should be spaced 2.5 to 3.0 m apart, with a minimum slope of one per cent. Underdrains should discharge back to the secondary treatment section of the sewage treatment plant. Various pipe materials may be selected provided the material is of suitable strength, corrosion resistant, and appropriately bedded to ensure that pipe is not damaged by sludge removal equipment.

Gravel
The lower course of gravel around the underdrains should be properly graded, should be at least 300 mm in depth, extending at least 150 mm above the top of the underdrains, and should be placed in two or more layers. The top layer, of at least 75 mm in depth, should consist of gravel 3 mm to 6 mm in size.

Sand
The top course should consist of 250 to 450 mm of clean coarse sand. The effective size should range from 0.3 to 1.2 mm with a uniformity coefficient of less than 5.0. The finished sand surface should be level.

Additional Dewatering Provisions
Consideration should be given for providing a means of decanting supernatant of sludge placed on the sludge drying beds. More effective decanting of supernatant may be accomplished with polymer treatment of sludge.

12.5.4.3.4 Impervious Type Beds
Paved drying beds should be designed with consideration for space requirements to operate mechanical equipment for removing the dried sludge.

12.5.4.3.5 Location
Depending on prevailing wind directions, a minimum distance of 100 to 150 m should be kept from open sludge drying beds and dwellings. However, the minimum may be reduced to 60 m to 80 m for enclosed beds. The selected location for open beds should be at least 30 m from public roads and 25 m for enclosed beds. The plant owner may be required to spray deodorants and odour masking chemicals whenever there are complaints from the population in the neighbourhood.

12.5.4.3.6 Winter Storage
Alternative methods of disposal should be arranged for the non-drying season which may start as early as October (or November) and end in May (or April).

12.5.4.3.7 Dimensions
The bed size generally should be 4.5 to 7.5 m wide with the length selected to satisfy desired bed loading volume.

12.5.4.3.8 Depth of Sludge
The sludge dosing depth should generally be 200 to 300 mm for warm weather operating modes; for winter freeze drying depths of 1 to 3 m can be used depending upon the number of degree days in winter.
12.5.4.3.9 Number of Beds
Three beds are desirable for increased flexibility of operation. Not less than two beds should be provided.

12.5.4.3.10 Walls
Walls should be watertight and extend 400 to 500 mm above and at least 200 mm below the surface. Outer walls should be extended at least 100 mm above the outside grade elevation to prevent soil from washing on to the beds.

12.5.4.3.11 Sludge Influent
The sludge pipe to the beds should terminate at least 300 mm above the surface and be so arranged that it will drain. Concrete splash plates for percolation type beds should be provided at sludge discharge points. One inlet pipe per cell should be provided.

12.5.4.3.12 Sludge Removal
Each bed should be constructed so as to be readily and completely accessible to mechanical cleaning equipment. Concrete runways spaced to accommodate mechanical equipment should be provided. Special attention should be given to assure adequate access to the areas adjacent to the sidewalls. Entrance ramps down to the level of the sand bed should be provided. These ramps should be high enough to eliminate the need for an entrance end wall for the sludge bed.

Atlantic Canada climatological conditions may permit 3 or 4 cycles (consisting of filling the open bed with digested sludge, drying and emptying) during the drying season. However, the number of cycles may be increased to approximately 10 with covered beds. These values are tentative and subject to revision after field observations.

12.5.4.3.13 Covered Beds
Consideration should be given to the design and use of covered sludge drying beds.

12.5.5 Sludge Lagoons

12.5.5.1 General
Sludge drying lagoons may be used as a substitute for drying beds for the dewatering of digested sludge. Lagoons are not suitable for dewatering untreated sludges, limed sludges, or sludges with a high strength supernatant because of their odour and nuisance potential. The performance of lagoons, like that of drying beds, is affected by climate; precipitation and low temperatures which inhibit dewatering. Lagoons are most applicable in areas with high evaporation rates.

Sludge lagoons may also be used as temporary sludge storage facilities, when spreading on agricultural land cannot be carried out due to such factors as wet ground, frozen ground or snow cover.

Sludge lagoons as a means of dewatering digested sludge will be permitted only upon proof that the character of the digested sludge and the design mode of operation are such that offensive odours will not result. Where sludge lagoons are permitted, adequate provisions should be made for other sludge dewatering facilities or sludge disposal in the event of upset or failure of the sludge digestion process.

12.5.5.2 Design Considerations
The design, operation and location of sludge lagoons must take into consideration many factors, including the following:
• Possible nuisances - odours, appearance, mosquitos;
• Proximity to dwellings, water supply wells, watercourses, and property lines;
• Design - number, configuration, retention time, freeboard, size, shape depth, and site grading;
• Loading factors - solids concentration of digested sludge, loading rates;
• Operation – receiving station(s), monitoring, sampling, fencing, access, odour control, pH control, reporting, contingency planning;
• Soil conditions - permeability of soil, need for liner, stability of berm slopes, depth to bedrock (See Section 7.6.2.4), etc.;
• Groundwater and surface water conditions - elevation of maximum groundwater level (See Section 7.6.2.4), direction of groundwater movement, location of monitoring and any drinking water wells and surface water bodies in the area;
• Sludge and supernatant removal - volumes, concentrations, methods of removal, method of supernatant treatment and final sludge disposal;
• Climatic effects - evaporation, rainfall, freezing, snowfall, temperature, solar radiation;
• Climate change projections; and
• Final Closure; rehabilitation and restoration of the site.

12.5.5.3 Pre-Treatment
Pre-treatment requirements for sludge lagoons are similar to sludge drying beds.

12.5.5.4 Soil and Groundwater Conditions
The soil must be reasonably porous and the bottom of the lagoons must be at least 1.2 m above the maximum ground water table. Surrounding areas should be graded to prevent surface water from entering the lagoon. In some critical instances, the reviewing authority may require a lagoon to be lined with a synthetic material.

12.5.5.5 Depth
Lagoons should be at least 1 m in depth while maintaining a minimum of 0.6 m of freeboard.

12.5.5.6 Seal
Adequate provisions should be made to seal the sludge lagoon bottom and embankments in accordance with the requirements of Section 7.6.6 to prevent leaching into adjacent soils or ground water. Seal to be protected to prevent damage from sludge removal equipment.

12.5.5.7 Area
The area required will depend on local climatic conditions and climate change projections. Not less than two lagoons should be provided.

12.5.5.8 Location
Consideration should be given to prevent pollution of ground and surface water. Adequate isolation should be provided to alleviate nuisance impact.

12.5.5.9 Cycle Time and Sludge Removal
The cycle time for lagoons varies from several months to several years. Typically, sludge is pumped to the lagoon for 18 months and then the lagoon is rested for six months.

Sludge is removed mechanically, usually at a moisture content of about 70 percent.
12.5.6 Mechanical Dewatering Facilities

12.5.6.1 General
Provisions should be made to maintain sufficient continuity of service so that sludge may be dewatered without accumulation beyond storage capacity. If it is proposed to dewater the sludge by mechanical methods such as rotary press, centrifuges, filter presses or belt filters, a detailed description of the process and design data should accompany the plans.

Unless standby facilities are available, adequate storage facilities should be provided. The storage capacity should be sufficient to handle at least 4 days of sludge production volume.

12.5.6.2 Performance of Mechanical Dewatering Methods
Table 12.6 outlines the solids capture, solids concentrations normally achieved and energy requirements for various mechanical dewatering methods.

Table 12.6 Sludge Dewatering Methods and Performance with Various Sludge Types

<table>
<thead>
<tr>
<th>Dewatering Method</th>
<th>Solids Capture (%)</th>
<th>Solids Concentrations Normally Achieved (1)</th>
<th>Median Energy Required (MJ/Dry Tonne) (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotary Press</td>
<td>90 - 95</td>
<td>Raw primary + WAS (25-35%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digested primary + WAS (15-25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAS (13-20%)</td>
<td>70 to 80</td>
</tr>
<tr>
<td>Filter Press</td>
<td>90 - 95</td>
<td>Raw primary + WAS (30-50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Digested primary + WAS (35-50%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAS (25-50%)</td>
<td>360</td>
</tr>
<tr>
<td>Centrifuge (Solid Bowl)</td>
<td>95 - 99</td>
<td>Raw or Digested primary + WAS (15-25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAS (12-15%)</td>
<td>360</td>
</tr>
<tr>
<td>Belt Filter Press</td>
<td>85 - 95</td>
<td>Raw or Digested primary + WAS (14-25%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WAS (10-15%)</td>
<td>130</td>
</tr>
</tbody>
</table>

1. Including conditioning chemicals (i.e. polymer), if required.
2. MJ/dry tonne - denotes megajoules per dry tonne of sludge throughput.

12.5.6.3 Number of Units
With sludge dewatering equipment, multiple units will generally be required unless satisfactory sludge storage facilities or alternate sludge disposal methods are available for use during periods of equipment repair. Often the need for full standby units will be unnecessary if the remaining duty units can be operated for additional shifts in the event of equipment breakdown.

12.5.6.4 Ventilation
Adequate facilities should be provided for ventilation of the dewatering area in accordance with area classification as determined by the latest version of NFPA 820. The exhaust air should be properly conditioned to avoid odour nuisance.

12.5.6.5 Chemical Handling Enclosures
Lime-mixing facilities should be completely enclosed to prevent the escape of lime dust. Chemical handling equipment should be automated to eliminate the manual lifting requirement.
12.5.6.6 Drainage and Filtrate Disposal
Drainage or filtrate from dewatering units should be returned to the sewage treatment process at appropriate points and flow rates.

12.5.6.7 Other Dewatering Facilities
If it is proposed to dewater sludge by mechanical means, other than those outlined below, a detailed description of the process and design should accompany the plans.

12.5.6.8 Rotary Presses
Most types of wastewater sludge can be dewatered with Rotary Presses and the results achieved are generally superior to those of vacuum filters or belt filter presses.

The Rotary Press is a pressure-controlled device and should be provided with its own inlet pressure controls, outlet pressure controls, feed flow monitoring and polymer feed flow controlling.

The Rotary Press should be provided with its own flocculation chamber, equipped with a variable-speed impeller.

Flocculated sludge is fed continuously into the channels where it is dewatered.

A channel consists of a pair of rotating screens, coupled to a driving hub and enclosed by a fabricated steel housing, each housing being completely removable and interchangeable with other channels of the same size and description.

The number of channels needed is determined by the flow requirements, quality of sludge, the cake dryness, the filtrate quality and economic, dimensional and maintenance considerations.

A Rotary Press comprises at least the following components:

One or several dewatering channels, mounted on the gear reducer output shaft.

Dewatering channels
The following are the major components to the Dewatering channel:
- Filtration elements
- Filtration wheels
- Deflector
- Gland covers and bearings
- Wash system

Drive System
The major components to the Drive system include:
- Speed Reducer
- Motor

12.5.6.9 Filter Presses
The capacity of filter presses is greatly affected by the initial solids concentration. With low feed solids, chemical requirements increase significantly. Sludge, thickening should therefore be considered as a pre-treatment step.
Filter press systems should be designed in accordance with the following guidelines:

Sludge conditioning tank:
Detention time maximum 20 minutes at peak pumpage rate;

Feed pumps:
Variable capacity to allow pressures to be increased gradually, without underfeeding or overfeeding sludge; pumps should be of a type to minimize floc shear; pumps must deliver high volume at low head initially and low volume at high head during latter part of cycle; ram or piston pumps, progressing cavity pumps or double diaphragm pumps are generally used;

Cake handling:
Filter press must be elevated above cake conveyance system to allow free fall; cake can be discharged directly to trucks, into dumper boxes, or onto conveyors (usually cake breakers may be needed);

Cycle times:
1.5 to 6 h (normally 1.5 to 3 h); and

Operating pressures:
Usually 700 to 1400 kPa, but may be as high as 1750 kPa. The operating pressure should not exceed 1000 to 1050 kPa, if polymer is applied as the conditioning agent.

12.5.6.10 Solid Bowl Centrifuges

The variables of importance for centrifuges include bowl length/diameter ratio, bowl angle, bowl flow pattern, bowl speed, pool volume, internal conveyor design, and conveyor speed.

Bowl length/diameter ratios of 2.5 to 4.0 should be provided to ensure adequate settling time and surface area. Bowl angles must be kept shallow.

The bowl flow pattern can be either countercurrent or concurrent. Pool depth can be varied by adjustable weirs.

Increased bowl speed increases the centrifugal forces available for clarification, but the settled solids can become more difficult to remove due to the higher gravitational forces.

Conveyor design and speed will affect the efficiency of solids removal. Differential speed must be kept low enough to minimize turbulence and internal wear yet high enough to provide sufficient solids handling capacity.

For most wastewater sludges, the capacity of the centrifuge will be limited by the clarification capacity (hydraulic capacity) and therefore the solids concentration. Increasing the feed solids will increase the solids handling capacity. Thickening should, therefore, be considered as a pre-treatment operation.

Since temperature affects the viscosity of sludges, if the temperatures will vary appreciably (as with aerobic digestion), the required centrifuge capacity should be determined for the lowest temperature expected.

The chemical conditioning agents most commonly used for centrifuges are polymers. Flocculating agents are typically injected at the head of the unit to avoid shearing the floc.

Other general design guidelines for solid bowl centrifuges are as follows:
Feed pump:
Sludge feed should be continuous; pumps should be variable flow type; one pump should be provided per centrifuge for multiple centrifuge systems; chemical dosage should vary with the pumpage rate.

Sludge pre-treatment:
Depending upon the sewage treatment process, grit removal, screening or maceration may be required for the feed sludge stream.

Solids capture:
85 - 95 percent is generally desirable.

Machine materials:
Generally, carbon steel or stainless steel; parts subject to wear should be protected with hard facing materials such as a tungsten carbide material.

Machine foundations:
Foundations must be capable of absorbing the vibratory loads.

Provision for Maintenance:
Sufficient space must be provided around the machine(s) to permit disassembly; an overhead hoist should be provided; hot and cold water supplies will be needed to permit flushing out the machine; drainage facilities will be necessary to handle wash water.

12.5.6.11 Belt Filter Presses
Most types of waste water sludges can be dewatered with belt filter presses.

Chemical conditioning is generally accomplished with polymer addition.

Solids handling capabilities are likely to range from 50 g/m·s (based on belt width) for excess activated sludge to 330 g/m·s for primary sludge.

12.6 Sludge Pumps and Piping
12.6.1 Sludge Pumps
12.6.1.1 General Sludge Pumping Requirements
Table 12.7 outlines general sludge pumping requirements for various sludge types.
Table 12.7 General Sludge Pumping Requirements

<table>
<thead>
<tr>
<th>Sludge Source</th>
<th>Slurry (% Total Solids)</th>
<th>Static Head (m)</th>
<th>TDH (m)</th>
<th>Abrasive Service</th>
<th>Duty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Treatment-Grit</td>
<td>0.5 - 10.0</td>
<td>0 - 1.5</td>
<td>1.5 - 3</td>
<td>Yes –High</td>
<td>Heavy</td>
</tr>
<tr>
<td>Primary Sedimentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unthickened</td>
<td>0.2 - 2.0</td>
<td>3 – 12</td>
<td>10 - 200</td>
<td>Yes</td>
<td>Medium</td>
</tr>
<tr>
<td>Thickened</td>
<td>4.0 - 10.0</td>
<td>3 – 12</td>
<td>12 - 25</td>
<td>Yes</td>
<td>Heavy</td>
</tr>
<tr>
<td>Secondary Sedimentation (for Recirculation)</td>
<td>0.5 - 2.0</td>
<td>1 - 2</td>
<td>3 - 4.5</td>
<td>No</td>
<td>Light</td>
</tr>
<tr>
<td>Secondary Sedimentation (for Thickening)</td>
<td>0.5 - 2.0</td>
<td>1.2 - 2.4</td>
<td>3 - 4.5</td>
<td>No</td>
<td>Light</td>
</tr>
<tr>
<td>Thickener Underflow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digester Recirculation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underflow</td>
<td>5 - 10</td>
<td>6 - 12</td>
<td>25 - 45</td>
<td>Yes/No*</td>
<td>Heavy</td>
</tr>
<tr>
<td>Chemically Produced Sludges:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alum/Ferric - primary</td>
<td>0.5 - 310</td>
<td>3 - 12</td>
<td>9 - 20</td>
<td>No</td>
<td>Light</td>
</tr>
<tr>
<td>Lime – Primary</td>
<td>1.0 - 6.0</td>
<td>3 - 12</td>
<td>9 - 25</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>Lime – Secondary</td>
<td>2.0 - 15.0</td>
<td>3 - 12</td>
<td>9 - 25</td>
<td>No</td>
<td>Medium</td>
</tr>
<tr>
<td>Incinerator Slurries</td>
<td>0.5 - 10</td>
<td>0 - 15</td>
<td>6 - 30</td>
<td>Yes- High</td>
<td>Heavy</td>
</tr>
</tbody>
</table>

* Depends on Degritting Efficiency
** High Pressure for Heat Treatment

12.6.1.2 Capacity
Pump capacities should be adequate but not excessive. Provision for varying pump capacity is desirable.

12.6.1.3 Duplicate Units
Duplicate units should be provided where failure of one unit would seriously hamper plant operation.

12.6.1.4 Type
Plunger pumps, screw feed pumps or other types of pumps with demonstrated solids handling capability should be provided for handling raw sludge. Where centrifugal pumps are used, a parallel positive displacement pump should be provided as an alternate to pump heavy sludge concentrations, such as primary or thickened sludge, that may exceed the pumping head of the centrifugal pump.

12.6.1.5 Minimum Head
A minimum positive head of 600 mm should be provided at the suction side of centrifugal type pumps and is desirable for all types of sludge pumps. Maximum suction lifts should not exceed 3 m for plunger pumps.

12.6.1.6 Head Loss
Figure 12.1 shows the multiplication factor to apply to the friction losses for turbulent flow of clean water to calculate the friction losses for untreated primary and concentrated sludges. Use of Figure 12.1 will often provide sufficiently accurate results for design, especially at solids concentrations below 3 percent. However, as
pipe length, percent total solids and percent volatile solids increase, more elaborate methods may have to be used to calculate the friction losses with sufficient accuracy.

![Figure 12.1 Approximate Friction Head Loss for Laminar Flow of Sludge](image)

- Multiply loss with clean water by K to estimate friction loss under laminar conditions (see text).
- The Information on this figure has been extracted from EPA 625/1-79-011 "Process Design Manual for Sludge Treatment and Disposal, September 1979.

12.6.1.7 Sampling Facilities

Unless sludge sampling facilities are otherwise provided, quick closing sampling valves should be installed at the sludge pumps. The size of valve and piping should be at least 40 mm and terminate at a suitable sized sampling sink or floor drain.

12.6.2 Sludge Piping

12.6.2.1 Size and Head

Sludge withdrawal piping should have a minimum diameter of 200 mm for gravity withdrawal and 150 mm for pump suction and discharge lines. Where withdrawal is by gravity, the available head on the discharge pipe should be adequate to provide at least 1.0 m/s velocity. Sludge pumpage velocities of 0.9 to 1.5 m/s should be developed. For heavier sludges and grease, velocities of 1.5 to 2.4 m/s are needed.

12.6.2.2 Slope

Gravity piping should be laid on uniform grade and alignment. The slope on gravity discharge piping should not be less than 3 percent for primary sludge and sludges thickened to greater than 2 percent solids. For aerobically digested or waste activated sludges (less than 2 percent solids), slope should be not be less than 2 percent. Provisions should be made for draining and flushing discharge lines.
12.6.2.3 Supports
Special consideration should be given to the corrosion resistance and continuing stability of supporting systems for piping located inside the digestion tank.

12.7 Sludge Stabilization

12.7.1 Anaerobic Sludge Digestion

12.7.1.1 Applicability
Anaerobic digestion may be considered beneficial for sludge stabilization when the sludge volatile solids content is 50% or higher and if no inhibitory substances are present or expected. Anaerobic digestion of primary sludge is preferred over activated sludge because of the poor solids-liquid separation characteristics of activated sludges. Combining primary and secondary sludges will result in settling characteristics better than activated sludge but less desirable than primary alone. Chemical sludges containing lime, alum, iron, and other substances can be successfully digested if the volatile solids content remains high enough to support the biochemical reactions and no toxic compounds are present. If an examination of past sludge characteristics indicates wide variations in sludge quality, anaerobic digestion may not be feasible because of its inherent sensitivity to changing substrate quality. Table 12.8 lists sludges which are suitable for anaerobic digestion.

Table 12.8 Sludges Satisfactory for Anaerobic Digestion

<table>
<thead>
<tr>
<th>Sludges Satisfactory for Anaerobic Digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary and Lime</td>
</tr>
<tr>
<td>Primary and Ferric Chloride</td>
</tr>
<tr>
<td>Primary and Alum</td>
</tr>
<tr>
<td>Primary and Trickling Filter</td>
</tr>
<tr>
<td>Primary, Trickling Filter, and Alum</td>
</tr>
<tr>
<td>Primary and Waste Activated</td>
</tr>
<tr>
<td>Primary, Waste Activated, and Lime</td>
</tr>
<tr>
<td>Primary, Waste Activated, and Alum</td>
</tr>
<tr>
<td>Primary, Waste Activated, and Ferric Chloride</td>
</tr>
<tr>
<td>Primary, Waste Activated, and Sodium Aluminate</td>
</tr>
</tbody>
</table>

The advantages offered by anaerobic digestion include:
- Excess energy over that required by the process is produced. Methane is produced and can be used to heat and mix the reactor. Excess methane gas can be used to heat space, produce electricity, or as engine fuel.
- Quantity of total solids for ultimate disposal is reduced. The volatile solids present are converted to methane, carbon dioxide, and water thereby reducing the quantity of solids. About 30 to 40% of the total solids may be destroyed and 40 to 60% of the volatile solids may be destroyed.
- Product is a stabilized sludge that may be free from strong or foul odours and can be used for land application as ultimate disposal because the digested sludge contains plant nutrients.
- Pathogens are destroyed to a high degree during the process. Thermophilic digestion enhances the degree of pathogen destruction.
- Most organic substances found in municipal sludge are readily digestible except lignins, tannins, rubber, and plastics.

The disadvantages associated with anaerobic digestion include:
- Digester is easily upset by unusual conditions, including erratic or high loadings, and is very slow to recover.
- Operators must follow proper operating procedures.
- Heating and mixing equipment are required for satisfactory performance.
• Large reactors are required because of the slow growth of methanogens and required solid retention times (SRT's) of 15 to 20 days for a high-rate system. Thus capital cost is high.
• Resultant supernatant sidestream is a strong waste stream that greatly adds to the loading of the wastewater plant. It contains high concentrations of BOD, COD, suspended solids, and ammonia nitrogen.
• Cleaning operations are difficult because of the closed vessel. Internal heating and mixing equipment can become major problems as a result of corrosion and wear in harsh inaccessible environments.
• Poor in dewatering characteristics.
• Possibility of explosion as a result of inadequate operation and maintenance, leaks, or operator carelessness exists.
• Gas line condensation or clogging can cause major maintenance problems.

12.7.1.2 Digestion Tanks and Number of Stages
With anaerobic sludge digestion facilities, the need for multiple units can often be avoided by providing two-stage digestion along with sufficient flexibility in sludge pumpage and mixing so that one stage can be serviced while the other stage receives the raw sludge. Single stage digesters will generally not be satisfactory due to the usual need for sludge storage, and effective supernatant depth. They will be considered, however, where the designer can show that the above concerns can be satisfied and that alternate means of sludge processing or emergency storage can be used in the event of breakdown.

12.7.1.3 Access Manholes
At least two, 760 mm diameter access manholes should be provided in the top of the tank in addition to the gas dome. There should be stairways to reach the access manholes. A separate sidewall manhole should be provided. The opening should be large enough to permit the use of mechanical equipment to remove grit and sand. This manhole should be located near the bottom of the sidewall. All manholes should be provided with gas-tight and water-tight covers.

12.7.1.4 Safety
Non-sparking tools, safety lights, rubber-soled shoes, safety harness, gas detectors for inflammable and toxic gases and at least two self-contained breathing units should be provided for workers involved in cleaning the digesters.

Necessary safety facilities should be included where sludge gas is produced. All tank covers should be provided with pressure and vacuum relief valves and flame traps together with automatic safety shut-off valves. Water seal equipment should not be installed.

12.7.1.5 Field Data
Wherever possible, such as in the case of plant expansions, actual sludge quantity data should be considered for digester design. Often, due to errors introduced by poor sampling techniques, inaccurate flow measurements or unmeasured sludge flow streams, the sludge data from existing plants may be unsuitable for use in design. Therefore, before sludge data is used for design, it should be assessed for its accuracy.

12.7.1.6 Typical Sludge Qualities and Generation Rates for Different Unit Processes
When reliable data are not available, the sludge generation rates and characteristics provided in Table 12.9 may be used.
Table 12.9 Typical Sludge Qualities and Generation Rates for Different Unit Processes

<table>
<thead>
<tr>
<th>Unit Process</th>
<th>Liquid Sludge</th>
<th>Solids Concentration</th>
<th>Volatile Solids</th>
<th>Dry Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(l/m³)</td>
<td>Range (%)</td>
<td>Average (%)</td>
<td>(g/m³)</td>
</tr>
<tr>
<td>Primary Sedimentation with Anaerobic Digestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undigested (No P Removal)</td>
<td>2.0</td>
<td>(3.5-8)</td>
<td>5.0</td>
<td>65</td>
</tr>
<tr>
<td>Undigested (With P Removal)</td>
<td>3.2</td>
<td>(3.5-7)</td>
<td>4.5</td>
<td>65</td>
</tr>
<tr>
<td>Digested (No P Removal)</td>
<td>1.1</td>
<td>(5-13)</td>
<td>6.0</td>
<td>50</td>
</tr>
<tr>
<td>Digested (With P Removal)</td>
<td>1.6</td>
<td>(5-13)</td>
<td>5.0</td>
<td>50</td>
</tr>
<tr>
<td>Primary Sedimentation and Conventional Activated Sludge with Anaerobic Digestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undigested (No P Removal)</td>
<td>4.0</td>
<td>(2-7)</td>
<td>4.5</td>
<td>65</td>
</tr>
<tr>
<td>Undigested (With P Removal)</td>
<td>5.0</td>
<td>(2-6)</td>
<td>4.0</td>
<td>60</td>
</tr>
<tr>
<td>Digested (No P Removal)</td>
<td>2.0</td>
<td>(2-6)</td>
<td>5.0</td>
<td>50</td>
</tr>
<tr>
<td>Digested (With P Removal)</td>
<td>3.5</td>
<td>(2-6)</td>
<td>4.0</td>
<td>45</td>
</tr>
<tr>
<td>Contact Stabilization and High Rate with Aerobic Digestion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undigested (No P Removal)</td>
<td>15.5</td>
<td>(0.4-2.8)</td>
<td>1.1</td>
<td>70</td>
</tr>
<tr>
<td>Undigested (With P Removal)</td>
<td>19.1</td>
<td>(0.4-2.8)</td>
<td>1.1</td>
<td>60</td>
</tr>
<tr>
<td>Digested (No P Removal)</td>
<td>6.1</td>
<td>(1-3)</td>
<td>1.9</td>
<td>70</td>
</tr>
<tr>
<td>Digested (With P Removal)</td>
<td>8.1</td>
<td>(1-3)</td>
<td>1.9</td>
<td>60</td>
</tr>
<tr>
<td>Extended Aeration with Aerated Sludge Holding Tank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waste Activated (No P Removal)</td>
<td>10.0</td>
<td>(0.4-1.9)</td>
<td>0.9</td>
<td>70</td>
</tr>
<tr>
<td>Waste Activated (With P Removal)</td>
<td>13.3</td>
<td>(0.4-1.9)</td>
<td>0.9</td>
<td>60</td>
</tr>
<tr>
<td>Sludge Holding Tank (No P Removal)</td>
<td>4.0</td>
<td>(0.4-1.9)</td>
<td>2.0</td>
<td>70</td>
</tr>
<tr>
<td>Sludge Holding Tank (With P Removal)</td>
<td>5.5</td>
<td>(0.4-5.0)</td>
<td>2.0</td>
<td>60</td>
</tr>
</tbody>
</table>

Note:
- (L/cu. m) Denotes litres of liquid sludge per cubic metre of treated sewage
- (g/cu. m) Denotes grams of dry solids per cubic metre of treated sewage
- The above values are based on typical raw sewage with total BOD = 170 mg/L, SOLUBLE BOD = 50%, SS = 200 mg/L, P = 7 mg/L, NH₄⁻ = 20 mg/L

12.7.1.7 Solids Retention Time
The minimum solids retention time for a low rate digester should be 30 days. The minimum solids retention time of a high rate digester should be 15 days.

12.7.1.8 Design of Tank Elements

12.7.1.8.1 Digester Shape
Anaerobic digesters are generally cylindrical in shape with inverted conical bottoms. Heat loss from digesters can be minimized by choosing a proper depth-diameter ratio such that the total surface area is the least for a given volume. A cylinder with diameter equal to depth can be shown to be the most economical shape from a heat loss viewpoint. However, structural requirements and scum control aspects also govern the optimum depth-diameter ratio.
12.7.1.9 Floor Shape
To facilitate draining, cleaning and maintenance, the following features are desirable:

The tank bottom should slope to drain toward the withdrawal pipe. For tanks equipped with mechanisms for withdrawal of sludge, a bottom slope not less than 1:12 (vertical: horizontal) is recommended. Where the sludge is to be removed by gravity alone, 3:12 slope is recommended.

12.7.1.10 Depth and Freeboard
For those units proposed to serve as supernatant development tanks, the depth should be sufficient to allow for the formation of a reasonable depth of supernatant liquor. A minimum water depth of 6 metres is recommended. The acceptable range for sidewater depth is between 6 and 14 m.

The freeboard provided must take into consideration the type of cover and maximum gas pressure. For floating covers, the normal working water level in the tank under gas pressure is approximately 0.8 m below the top of the wall, thus providing from 0.5 to 0.6 m of freeboard between the liquid level and the top of the tank wall. For fixed flat slab roofs, a freeboard of 0.3 to 0.6 m above the working liquid level is commonly provided. For fixed conical or domed roofs, the freeboard between the working liquid level and the top of the wall inside the tank can be reduced to less than 0.3 m.

12.7.1.11 Scum Control
Scum accumulation can be controlled by including any of the following provisions in the equipment design:

a) Floating covers keep the scum layer submerged and thus moist and more likely to be broken up;
b) Discharging recirculated sludge on the scum mat serves the same purpose as (a);
c) Recirculating sludge gas under pressure through the tank liquors and scum;
d) Mechanically destroying the scum by employing rotating arms or a propeller in a draft tube;
e) A large depth-area ratio; or
f) A concentrated sludge feed to the digester.

Items (e) and (f) would release large volumes of gas per unit area, keep the scum in motion and mix the solids in the digester.

12.7.1.12 Grit and Sand Control
The digesters should be designed to minimize sedimentation of the particles and facilitate removal if settling takes place. These objectives can be achieved if tank contents are kept moving at 0.23 to 0.3 m/s and the floor slopes are about 1:4.

12.7.1.13 Alkalinity and pH Control
The effective pH range for methane producers is approximately 6.5 to 7.5 with an optimum range of 6.8 to 7.2. Maintenance of this optimum range is important to ensure good gas production and to eliminate digester upsets.

The stability of the digestion process depends on the buffering capacity of the digester contents; the ability of the digester contents to resist pH changes. The alkalinity is a measure of the buffering capacity of a freshwater system. Higher alkalinity values indicate a greater capacity for resisting pH changes. The alkalinity should be measured as bicarbonate alkalinity. Values for alkalinity in anaerobic digesters range from 1500 to 5000 mg/L as CaCO₃. The volatile acids produced by the acid producers tend to depress pH. Volatile acid concentrations under stable conditions range from 100 to 500 mg/L. Therefore, a constant ratio below 0.25 of volatile acids to alkalinity should be maintained so that the buffering capacity of the system can be maintained.
Sodium bicarbonate, lime, sodium carbonate, and ammonium hydroxide application are recommended for increasing alkalinity of digester contents.

12.7.1.14 Mixing
Thorough mixing via digester gas (compressor power requirement 5 to 8 W/m³) or mechanical means (6.6 W/m³) in the primary stage will be necessary in all cases when digesters are proposed. This mixing should assure the homogeneity of the digester contents, and prevent stratification. Actual power requirements should be based on tank size, geometry, sludge rheology, type of mixer, and mixing energy or shear rate required.

Gas mixing systems recirculate compressed digester gas in either unconfined or confined mixing; both creating upward mixing action.

Mechanical mixing uses axial flow propellers with roof or external mounted draft tubes. The roof mounted draft tubes limit the digester size to less than 24 m, while external mounted tubes can accommodate diameters greater than 24 m. Mechanical mixing utilizing vertical mixing action may also be considered.

Pump mixing uses axial flow patterns, and screw type centrifugal or chopper type pumps. These systems withdraw sludge from the bottom and pump it back to higher elevation within the digester. Where sludge recirculation is employed, pumps and associated pipework should meet the general intent of Section 11.6.

One concern with mixing is the formation of foam and grease on the surface of the digester. Means of suppression and/or removal should be considered.

12.7.1.15 Sludge Inlets, Outlets, Recirculation, and High-Level Overflow

12.7.1.15.1 Multiple Inlets and Draw-Offs
Multiple sludge inlets and draw-offs and, where used, multiple recirculation suction and discharge points to facilitate flexible operation and effective mixing of the digester contents, should be provided unless adequate mixing facilities are provided within the digester.

12.7.1.15.2 Inlet Configurations
One inlet should discharge above the liquid level and be located at approximately the center of the tank to assist in scum breakup. The second inlet should be opposite to the suction line at approximately the 0.7 diameter point across the digester.

12.7.1.15.3 Inlet Discharge Location
Raw sludge inlet discharge points should be so located as to minimize short circuiting to the digested sludge or supernatant draw-offs.

12.7.1.15.4 Sludge Withdrawal
Sludge withdrawal to disposal should be from the bottom of the tank. The bottom withdrawal pipe should be interconnected with the necessaryvalving to the recirculation piping to increase operational flexibility when mixing the tank contents.

12.7.1.15.5 Emergency Overflow
An un-valved vented overflow should be provided to prevent damage to the digestion tank and cover in case of accidental overfilling. This emergency overflow should be piped to an appropriate point and at an appropriate rate in the treatment process or side stream treatment facilities to minimize the impact on process units.
12.7.1.16 Primary Tank Capacity
The primary digestion tank capacity should be determined by rational calculations based upon such factors as volume of sludge added, percent solids and character, the temperature to be maintained in the digesters, the degree or extent of mixing to be obtained; and the degree of volatile solids reduction required. Calculations should be submitted to justify the basis of design.

When such calculations are not based on the above factors, the minimum primary digestion tank capacity outlined in Sections 12.5.5.9 will be required. Such requirements assume that the raw sludge is derived from ordinary domestic wastewater, a digestion temperature is to be maintained in the range of 32°C to 39°C, that 40 to 50 percent volatile matter will be maintained in the digested sludge, and that the digested sludge will be removed frequently from the system.

12.7.1.16.1 High Rate Digester
The primary high rate digester should provide for intimate and effective mixing to prevent stratification and to assure homogeneity of digester content. The system may be loaded at a rate up to 1.3 kg of volatile solids per cubic metre of volume per day in the active digestion unit. When grit removal facilities are not provided, the reduction of digester volume due to grit accumulation should be considered.

12.7.1.16.2 Low Rate Digester
For low rate digesters where mixing is accomplished only by circulating sludge through an external heat exchanger, the system may be loaded up to 0.64 kg of volatile solids per cubic metre of volume per day in the active digestion unit. This loading may be modified upward or downward depending upon the degree of mixing provided.

12.7.1.17 Secondary Digester Sizing
The secondary digester should be sized to permit solids settling for decanting and solids thickening operations, and in conjunction with possible off-site facilities, to provide the necessary digested sludge storage. The necessary total storage time will depend upon the means of ultimate sludge disposal, with the greatest time required with soil conditioning operations (winter storage), and with less storage required with landfilling or incineration as ultimate disposal methods. Offsite storage in sludge lagoons, sludge storage tanks, or other facilities may be used to supplement the storage capacity of the secondary digester. If high-rate primary digesters are used and efficient dewatering within the secondary digester is required, the secondary digester must be conservatively sized to allow adequate solids separation (secondary to primary sizing ratios of 2:1 to 4:1 are recommended).

12.7.1.18 Digester Covers
To provide gas storage volume and to maintain uniform gas pressures, a separate gas storage sphere should be provided, or at least one digester cover should be of the gas-holder floating type. If only one floating cover is provided, it should be on the secondary digester. Insulated pressure and vacuum relief valves and flame traps should be provided. Access manholes and at least two 200 mm sampling wells should also be provided on the digester covers.

Steel is the most commonly used material for digester covers. However, other properly designed and constructed materials have also been successfully employed, such as concrete, fibreglass, and membrane.
12.7.1.19 Sludge Piping
Maximum flexibility should be provided in terms of sludge transfer from primary and secondary treatment units to the digesters, between the primary and secondary digesters, and from the digesters to subsequent sludge handling operations. The minimum diameter of sludge pipes should be 200 mm for gravity withdrawal and 150 mm for pump suction and discharge lines. Provision should be made for flushing and cleaning sludge piping. Sampling points should be provided on all sludge lines. Main sludge transfer lines should be from the bottom of the primary digester to the mid-point of the secondary digester. Additional transfer lines should be from intermediate points in the primary digester (these can be dual-purpose supernatant and sludge lines).

12.7.1.20 Overflows
Each digester should be equipped with an emergency overflow system.

12.7.1.21 Gas Collection, Piping and Appurtenances
12.7.1.22 General
All portions of the gas system including the space above the tank liquor, storage facilities and piping should be so designed that under all normal operating conditions, including sludge withdrawal, the gas will be maintained under positive pressure. All enclosed areas where any gas leakage might occur should be adequately ventilated. All gas collection equipment, piping and appurtenances should comply with the Canadian Gas Association (CGA) Code for Digester Gas and Landfill Gas Installations, CAN/CGA-B105-M93 (latest edition).

12.7.1.23 Safety Equipment
All necessary safety facilities should be included where gas is produced. Pressure and vacuum relief valves and flame traps together with automatic safety shut-off valves, are essential, and should be protected from freezing. Water seal equipment should not be installed. Gas safety equipment and gas compressors should be housed in a separate room with an exterior entrance.

Provision should also be made for automatically purging the combustion chamber of the heating unit thoroughly with air after a shut-down or pilot light failure, and before it can be ignited. This will provide certainty that no explosive mixture exists within the unit.

12.7.1.24 Gas Piping and Condensate
The main gas collector line from the digestion tanks should be at least 100 mm in diameter with the gas intake being well above the digester scum level, generally at least 1.2 m above the maximum liquid level in the tank. A smaller diameter pipe at the gas production meter is acceptable. If gas mixing is used, the gas withdrawal pipe must be of sufficient size to limit the pressure drop in terms of the total gas flow from the digester. Such flow includes not only the daily gas production, but also the daily gas recycling flow. The recycling gas flow information should be combined with the estimated peak daily gas flow data to determine the proper piping size.

Gas pipe slopes of 20 mm/m are desirable with a minimum slope of 10 mm/m for drainage. The maximum velocity in sludge-gas piping should be limited to not more than 3.4 or 3.7 m/s.

Gas piping should slope to condensation traps at low points in a location not subject to freezing. The use of float controlled condensate traps is not permitted.

 Adequate pipe support is essential to prevent breaking, and special care should be given where pipes are located underground.
Gas piping and pressure relief valves must include adequate flame traps. They should be installed as close as possible to the device serving as a source of ignition.

12.7.1.25 Gas Utilization Equipment
Gas burning boilers, engines, etc., should be located at ground level and in well ventilated rooms, not connected to the digester gallery. Gas lines to these units should be provided with suitable flame traps.

12.7.1.26 Electrical Systems
Electrical equipment, fixtures and controls, in places enclosing anaerobic digestion appurtenances, where hazardous may accumulate, should comply with the latest version of NFPA 820. Digester galleries should be isolated from normal operating areas.

12.7.1.27 Waste Gas
Waste gas burners should be readily accessible and should be located at least 15 m away from any plant structure if placed at ground level. Waste gas burners should be of sufficient height and so located to prevent injury to personnel due to wind or downdraft conditions.

All waste gas burners should be equipped with automatic ignition, such as a pilot light or a device using a photoelectric cell sensor. Consideration should be given to the use of natural or propane gas to insure reliability of the pilot light.

Provision for condensate removal, pressure control, and flame protection ahead of waste burners is required.

12.7.1.28 Ventilation
Any underground enclosures connecting with digestion tanks or containing sludge or gas piping or equipment should be provided with forced ventilation in accordance with Canadian Gas Association (CGA) Code for Digester Gas and Landfill Gas Installations, CAN/CGA-B105-M93 and NFPA 820. Tightly fitting self-closing doors should be provided at connecting passageways and tunnels to minimize the spread of gas.

12.7.1.29 Meter
A gas meter with bypass should be provided, to meter total gas production for each active digestion unit. Total gas production for two-stage digestion systems operated in series may be measured by a single gas meter with proper interconnected gas piping.

Where multiple primary digestion units are utilized with a single secondary digestion unit, a gas meter should be provided for each primary digestion unit. The secondary digestion unit may be interconnected with the gas measurement unit of one of the primary units. Interconnected gas piping should be properly valved with gas tight valves to allow measurement of gas production from either digestion unit or maintenance of either digestion unit.

Gas meters may be of the orifice plate, turbine, thermal or vortex type. Positive displacement meters should not be utilized. The meter must be specifically designed for contact with corrosive and dirty gases.

12.7.2 Digestion Tank Heating
12.7.2.1 Heating Capacity
12.7.2.1.1 Capacity
Sufficient heating capacity should be provided to consistently maintain the design sludge temperature considering insulation provisions and ambient cold weather conditions. Where digestion tank gas is used for
other purposes, an auxiliary fuel may be required. The design operating temperature should be in the range of 29 °C to 38 °C where optimum mesophilic digestion is required.

12.7.2.2 Insulation
Wherever possible, digestion tanks should be constructed above ground-water level and should be suitably insulated to minimize heat loss. Maximum utilization of earthen bank insulation should be used.

12.7.2.3 Heating Facilities
Sludge may be heated by circulating the sludge through external heaters or by heating units located inside the digestion tank. The external heat exchanger systems are preferred.

12.7.2.3.1 External Heating
Piping should be designed to provide for the preheating of feed sludge before introduction to the digesters. Provisions should be made in the lay-out of the piping and valving to facilitate heat exchanger tube removal and cleaning of these lines. Heat exchanger sludge piping should be sized for peak heat transfer requirements. Heat exchangers should have a heating capacity of 130 percent of the calculated peak heating requirement to account for the occurrence of sludge tube fouling.

12.7.2.3.2 Other Heating Methods
- The use of hot water heating coils affixed to the walls of the digester, or other types of internal heating equipment that require emptying the digester contents for repair, are not acceptable.
- Other systems and devices have been developed recently to provide both mixing and heating of anaerobic digester contents. These systems will be reviewed on their own merits. Operating data detailing their reliability, operation, and maintenance characteristics will be required.

12.7.2.4 Hot Water Internal Heating Controls
12.7.2.4.1 Mixing Valves
A suitable automatic mixing valve should be provided to temper the boiler water with return water so that the inlet water to the removable heat jacket or coils in the digester can be held below a temperature at which caking will be accentuated. Manual control should also be provided by suitable by-pass valves.

12.7.2.4.2 Boiler Controls
The boiler should be provided with suitable automatic controls to maintain the boiler temperature at approximately 82°C to minimize corrosion and to shut off the main gas supply in the event of pilot burner or electrical failure, low boiler water level, ow gas pressure, or excessive boiler water temperature or pressure.

12.7.2.4.3 Boiler Water Pumps
Boiler water pumps should be sealed and sized to meet the operating conditions of temperature, operating head, and flow rate. Duplicate units should be provided.

12.7.2.4.4 Thermometers
Thermometers should be provided to show inlet and outlet temperatures of sludge, hot water feed, hot water return, and boiler water.

12.7.2.4.5 Water Supply
The chemical quality should be checked for suitability for this use.
12.7.2.5 External Heater Operating Controls
All controls necessary to insure effective and safe operation are required. Provision for duplicate units in critical elements should be considered.

12.7.2.6 Supernatant Withdrawal
12.7.2.7 Piping Size
Supernatant piping should not be less than 150 mm in diameter. Precaution must be taken to avoid loss of digester gas through supernatant piping.

12.7.2.8 Withdrawal Arrangement
12.7.2.8.1 Withdrawal Levels
Piping should be arranged so that withdrawal can be made from three or more levels in the tank. A positive unvalved vented overflow should be provided. The emergency overflow should be piped to an appropriate point and at an appropriate rate in the treatment process or side stream treatment unit process to minimize the impact.

Both primary and secondary digesters should be equipped with supernating lines, so that during emergencies the primary digester can be operated as a single stage process.

12.7.2.8.2 Supernatant Selector
A fixed screen supernatant selector or similar type device should be limited for use in an unmixed secondary digestion unit. If a supernatant selector is provided, provisions should be made for at least one other draw-off level located in the supernatant zone of the tank, in addition to the unvalved emergency supernatant draw-off pipe. High pressure back-wash facilities should be provided.

12.7.2.8.3 Withdrawal Selection
On fixed cover tanks the supernatant withdrawal level should preferably be selected by means of interchangeable extensions at the discharge end of the piping.

12.7.2.9 Sampling
Provision should be made for sampling at each supernatant draw-off level. Sampling pipes should be at least 40 mm in diameter and should terminate at a suitably-sized sampling sink or basin.

12.7.2.10 Alternate Supernatant Disposal
An alternate disposal method for the supernatant liquor such as a lagoon, an additional sand bed or hauling from the plant site should be provided for use in case supernatant is not suitable or other conditions make it advisable not to return it to the plant. Consideration should be given to supernatant conditioning where appropriate in relation to its effect on plant performance and effluent quality.

12.7.2.11 Sludge Sampling Requirements
An adequate number of sampling pipes at proper locations should enable the operator to assess the quality of the contents and to know how much sludge is in the digesters. The following requirements should govern the design:
- To avoid clogging, sludge sampling pipes should be at least 75 mm in diameter;
- Provision should be made for the connection of a water source of adequate pressure to these pipes for back flushing when the need arises; and
- There should be at least three sampling pipes each separately valved for the primary digesters and four for the secondary digesters.
12.7.3 Aerobic Sludge Digestion
Aerobic digestion is accomplished in single or multiple tanks, designed to provide effective air mixing, reduction of the organic matter, supernatant separation and sludge concentration under controlled conditions.

12.7.3.1 Applicability
Aerobic digestion is considered suitable for secondary sludge or a combination of primary and secondary sludges. Table 12.10 provides the advantages and disadvantages in the use of aerobic sludge digestion.

Table 12.10 Advantages and Disadvantages of Aerobic Sludge Digestion

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low initial cost particularly for small plants</td>
<td>High energy costs</td>
</tr>
<tr>
<td>Supernatant less objectionable than anaerobic</td>
<td>Generally lower VSS destruction than anaerobic</td>
</tr>
<tr>
<td>Simple operational control</td>
<td>Reduced pH and alkalinity</td>
</tr>
<tr>
<td>Broad applicability</td>
<td>Potential for pathogen spread through aerosol drift</td>
</tr>
<tr>
<td>If properly designed, does not generate nuisance odours</td>
<td>Sludge is typically difficult to dewater by mechanical means</td>
</tr>
<tr>
<td>Reduces total sludge mass</td>
<td>Cold temperatures adversely affect performance</td>
</tr>
</tbody>
</table>

12.7.3.2 Field Data
Wherever possible, such as in the case of plant expansions, actual sludge quantity data should be considered for digester design. Often, due to errors introduced by poor sampling techniques, inaccurate flow measurements or unmeasured sludge flow streams, the sludge data from existing plants may be unsuitable for use in design. Before sludge data is used for design, it should be assessed for its accuracy.

12.7.3.3 Multiple Units
Multiple digestion units capable of independent operation are desirable and should be provided in all plants where the design average flow exceeds 380 m³/d. All plants not having multiple units should provide alternate sludge handling and disposal methods.

12.7.3.4 Pre-treatment
Thickening of sludge is recommended prior to aerobic digestion.

12.7.3.5 Design Considerations
Factors which should be considered when designing aerobic digesters include:
- Type of sludge to be digested;
- Ultimate method of disposal;
- Required winter storage;
- Digester pH;
- Sludge temperature; and
- Raw sludge quality.

12.7.3.6 Solids Retention Time
A minimum solids retention time of 45 days is required. If local conditions require a more stable sludge, a sludge age of 90 days should be necessary. To produce a completely stable sludge, a sludge age in excess of 120 days is required.
12.7.3.7 Hydraulic Retention Time
The minimum required hydraulic retention time for aerobic digesters provided with pre-thickening facilities are as follows:

<table>
<thead>
<tr>
<th>Minimum HRT (days)</th>
<th>Type of Sludge</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Waste Activated Sludge Only</td>
</tr>
<tr>
<td>25</td>
<td>Trickling Filter Sludge Only</td>
</tr>
<tr>
<td>30</td>
<td>Primary Plus Secondary Sludge</td>
</tr>
</tbody>
</table>

The more critical of the two guidelines, solids retention time and hydraulic retention time, should govern the design.

12.7.3.8 Tank Design

12.7.3.9 Tank Capacity
The determination of tank capacities should be based on rational calculations, including such factors as quantity of sludge produced, sludge characteristics, time of aeration and sludge temperature.

Calculations should be submitted to justify the basis of design.

When such calculations are not based on the above factors, the minimum combined digestion tank capacity should be based on the following:
- Volatile solids loading should not exceed 1.60 kg/m³·d in the digestion units. Lower loading rates may be necessary depending on temperature, type of sludge and other factors.

If 45 days solid retention time is all that is provided, it is suggested that 2/3 of the total digester volume be in the first tank and 1/3 be in the second tank. Actual storage requirements will depend upon the ultimate disposal operation. Any minor additional storage requirements may be made up in the second stage digester, but if major additional storage volumes are required, separate on-site or off-site sludge storage facilities should be considered to avoid the power requirements associated with aerating greatly oversized aerobic digesters.

12.7.3.10 Air and Mixing Requirements
Aerobic sludge digestion tanks should be designed for effective mixing by satisfactory aeration equipment. Sufficient air should be provided to keep the solids in suspension and maintain dissolved oxygen from 1-2 mg/L. A minimum mixing and air requirement of 0.50 litres per second per cubic metre of tank volume should be provided with the largest blower out of service. If diffusers are used, the non-clog type is recommended and they should be designed to permit continuity of service. Air supply to each tank should be valved separately to allow aeration shut down in either tank. All diffuser drop pipes should be able to withstand impact of ice masses that may form in winter and should allow for easy removal for maintenance. If mechanical aerators are utilized, at least two turbine aerators per tank should be provided. Use of mechanical equipment is discouraged where freezing temperatures are normally expected.

12.7.3.11 Tank Configuration
Aerobic digesters are generally open tanks. The tankage should be of common wall construction or earthen-bermed to minimize heat loss. Tank depths should be between 3.5-4.5 m; tanks and piping should be designed to permit sludge addition, sludge withdrawal, and a supernatant decanting zone from various depths.

Freeboard depths of at least 0.9 to 1.2 m should be provided to account for excessive foam levels. Floor slopes of 1:12 to 3:12 should be provided.
12.7.3.12 Supernatant Separation and Scum and Grease Removal

12.7.3.12.1 Supernatant Separation

Facilities should be provided for effective formation of a good quality supernatant. Separate facilities are recommended; however, supernatant separation may be accomplished in the digestion tank provided additional volume is provided. The supernatant draw off unit should be designed to prevent recycle of scum and grease back to plant process units. Provision should be made to withdraw supernatant from multiple levels of the supernatant withdrawal zone.

12.7.3.12.2 Scum and Grease Removal

Facilities should be provided for the effective collection of scum and grease from the aerobic digester for final disposal and to prevent its recycle back to the plant process, and to prevent long term accumulation and potential discharge in the effluent.

12.7.3.13 High Level Emergency Overflow

An un-valved high level overflow and any necessary piping should be provided to return digester overflow back to the head of the plant or to the aeration process in case of accidental overfilling. Design considerations related to the digester overflow should include waste sludge rate and duration during the period the plant is unattended, potential effects on plant process units, discharge location of the emergency overflow, and potential discharge or suspended solids in the plant effluent.

12.7.3.14 Digested Sludge Storage Volume

12.7.3.15 Sludge Storage Volume

Sludge storage must be provided in accordance with Section 12.5.2 to accommodate daily sludge production volumes and as an operational buffer for unit outage and adverse weather conditions. Designs utilizing increased sludge age in the activated sludge system as a means of storage are not acceptable.

12.7.3.16 Liquid Sludge Storage

Liquid sludge storage facilities should be based on the values in Table 12.11 unless digested sludge thickening facilities are utilized to provide solids concentrations of greater than 2 percent.

Table 12.11 Sludge Source

<table>
<thead>
<tr>
<th>Sludge Source</th>
<th>Volume m³/P.E. · day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste activated sludge – no primary settling, primary plus waste activated sludge</td>
<td>0.004</td>
</tr>
<tr>
<td>Waste activated sludge exclusive of primary sludge</td>
<td>0.002</td>
</tr>
<tr>
<td>Primary plus fixed film reactor sludge</td>
<td>0.003</td>
</tr>
</tbody>
</table>

Note: P.E. – Population Equivalent

12.7.4 High PH Stabilization

12.7.4.1 General

Alkaline material may be added to liquid primary or secondary sludges for sludge stabilization in lieu of digestion facilities; to supplement existing digestion facilities; or for interim sludge handling. There is no direct reduction of organic matter or sludge solids with the high pH stabilization process. There is an increase in the mass of dry sludge solids. Without supplemental dewatering, additional volumes of sludge will be generated. The design
should account for the increased sludge quantities for storage, handling, transportation, and disposal methods and associated costs.

12.7.4.2 Operational Criteria
Sufficient alkaline material should be added to liquid sludge in order to produce a homogeneous mixture with a minimum pH of 12 after 2 hours of vigorous mixing. Facilities for adding supplemental alkaline material should be provided to maintain the pH of the sludge during interim sludge storage periods.

12.7.4.3 Odour Control and Ventilation
Odour control facilities should be provided for sludge mixing and treated sludge storage tanks when located within 800 m of residential or commercial areas. The reviewing authority should be contacted for design and air pollution control objectives to be met for various types of air scrubber units. Ventilation is required for indoor sludge mixing, storage or processing facilities. Ventilation requirements must be consistent with the area classification as determined by the latest version of NFPA 820.

12.7.4.4 Mixing Tanks and Equipment
12.7.4.4.1 Tanks
Mixing Tanks may be designed to operate as either a batch or continuous flow process. A minimum of two tanks should be provided of adequate size to provide a minimum 2 hours contact time in each tank. The following items should be considered in determining the number and size of tanks:
- Peak sludge flow rates;
- Storage between batches;
- Dewatering or thickening performed in tanks;
- Repeating sludge treatment due to pH decay of stored sludge;
- Sludge thickening prior to sludge treatment; and
- Type of mixing device used and associated maintenance or repair requirements.

12.7.4.4.2 Equipment
Mixing equipment should be designed to provide vigorous agitation within the mixing tank, maintain solids in suspension, and provide for a homogeneous mixture of the sludge solids and alkaline material. Mixing may be accomplished either by diffused air or mechanical mixers. If diffused aeration is used, an air supply of 0.50 L/m3 s of mixing tank volume should be provided with the largest blower out of service. When diffusers are used, the non-clog type is recommended, and they should be designed to permit continuity of service. If mechanical mixers are used, the impellers should be designed to minimize fouling with debris in the sludge and consideration should be made to provide continuity of service during freezing weather conditions.

12.7.4.5 Chemical Feed and Storage Equipment
12.7.4.5.1 General
Alkaline material is caustic in nature and can cause eye and tissue injury. Equipment for handling or storing alkaline material should be designed for adequate operator safety. Storage, slaking, and feed equipment should be sealed as airtight as practical to prevent contact of alkaline material with atmospheric carbon dioxide and water vapour and to prevent the escape of dust material. All equipment and associated transfer lines or piping should be accessible for cleaning.

12.7.4.5.2 Feed and Slaking Equipment
The design of the feeding equipment should be determined by the treatment plant size, type of alkaline material used, slaking required, and operator requirements. Equipment may be either of batch or automated type. Automated feeders may be of the volumetric or gravimetric type depending on accuracy, reliability, and
maintenance requirements. Manually operated batch slaking of quicklime (CaO) should be avoided unless adequate protective clothing and equipment are provided. At small plants, used of hydrated lime [Ca(OH)₂] is recommended over quicklime due to safety and labour-saving reasons. Feed and slaking equipment should be sized to handle a minimum of 150% of the peak sludge flow rate including sludge that may need to be retreated due to pH decay. Duplicate units should be provided.

12.7.4.5.3 Chemical Storage Facilities
Alkaline materials may be delivered either in bag or bulk form depending upon the amount of material used. Material delivered in bags must be stored indoors and elevated above floor level. Bags should be of the multi-wall moisture-proof type. Dry bulk storage containers must be as airtight as practical and should contain a mechanical agitation mechanism. Storage facilities should be sized to provide a minimum of a 30-day supply.

12.7.4.6 Sludge Storage
Refer to Section 12.5.2 for general design considerations for sludge storage facilities.

The design should incorporate the following considerations for the storage of high pH stabilized sludge:

12.7.4.6.1 Liquid Sludge
Liquid high pH stabilized sludge should not be stored in a lagoon. Said sludge should be stored in a tank or vessel equipped with rapid sludge withdrawal mechanisms for sludge disposal or retreatment. Provisions should be made for adding alkaline material in the storage tank. Mixing equipment should be provided in all storage tanks.

12.7.4.6.2 Dewatered Sludge
On-site storage of dewatered high pH stabilized sludge should be limited to 30 days. Provisions for rapid retreatment or disposal of dewatered sludge stored on-site should also be made in case of sludge pH decay. Dewatered sludge cake should be suitably protected from weather for long term storage applications.

12.7.4.6.3 Off-Site Storage
There should be no off-site storage of high pH stabilized sludge unless specifically permitted by the regulatory agency.

12.7.4.7 Disposal
Immediate sludge disposal methods and options are recommended to be utilized in order to reduce the sludge inventory on the treatment plant site and amount of sludge that may need to be retreated to prevent odours if sludge pH decay occurs.

12.8 Advanced Treatment Alternatives for Pathogen Reduction
Since the USEPA regulation, 40 CFR-Part 503 was published in 1993, stabilized sludge has been classified as Exceptional Quality, Class A and Class B Bio-solids and the corresponding restrictions placed on their disposal and Processes to Further Reduce Pathogens (PFRP’s) are being developed and marketed.

The purpose of this section will be to describe some of the sludge digestion methods and PFRP’s that have become popular as a result of Rule 503. These methods may have application in Atlantic Canada wherever a need exists for a high quality end product due to restrictions that may exist for final disposal.

12.8.1 Processes to Further Reduce Pathogens (PFRP)
Unstabilized sludge contains putrescible organic substances, as well as pathogenic forms of bacteria, viruses, worm eggs, and the like. Sludge treatment processes that are classified as processes to further reduce
pathogens must reduce both the organics and pathogens to set levels. PFRP alternatives include composting, thermal drying, heat treatment, autothermal thermophilic aerobic digestion, irradiation, and pasteurization. The most applicable of the above processes will be described here.

12.8.1.1 Composting
Composting is a process in which organic material undergoes biological degradation to a stable end product. Sludge that has been composted properly is a sanitary, nuisance-free, humus-like material.

The designer should be familiar with the current requirements of these regulations and guidelines and consult with the regulators regarding site-specific design and operating criteria related to buffer zones, storage of composting material, runoff or leachate control, odour control and other process issues.

Composting is accomplished under aerobic conditions. Approximately 20 to 30 percent of the volatile solids are converted to carbon dioxide and water. As the organic material in the sludge decomposes, the compost heats to temperatures in the pasteurization range of 50 to 70°C, and enteric pathogenic organisms are destroyed. A properly composted sludge may be used as a soil conditioner in agricultural or horticultural applications or for final disposal, subject to any limitations based on constituents in the sludge.

Most composting operations consist of the following basic steps: (1) mixing dewatered sludge with an amendment and/or a bulking agent; (2) aerating the compost pile either by the addition of air, by mechanical turning, or by both; (3) recovery of the bulking agent (if practicable); (4) further curing and storage; and (5) final disposal. An amendment is an organic material added to the feed substrate, primarily to reduce the bulk weight and increase the air voids for proper aeration. Amendments can also be used to increase the quantity of degradable organics in the mixture. Commonly used amendments are sawdust, straw, recycled compost, and rice hulls. A bulking agent is an organic or inorganic material used to provide structural support and to increase the porosity of the mixture for effective aeration. Wood chips are the most commonly used bulking agents and can be recovered and reused. Aeration is required not only to supply oxygen, but to control the composting temperature and remove excess moisture.

Three major types of composting systems used are the aerated static pile, windrow, and in-vessel (enclosed mechanical) systems.

12.8.1.1.1 Aerated Static Pile
The aerated static pile system consists of a grid of aeration or exhaust piping over which a mixture of dewatered sludge and bulking agent is placed. In a typical static pile system, the bulking agent consists of wood chips, which are mixed with the dewatered sludge by a pug mill type or rotating drum mixer or by movable equipment such as a front-end loader. Material is composted for 21 to 28 days and is typically cured for another 30 days of longer. Typical pile heights are about 2 to 2.5 m. A layer of screened compost is often placed on top of the pile for insulation. Perforated plastic drainage pipes are commonly used for air supply and each individual pile is recommended to have an individual blower for more effective aeration control. Screening of the cured compost is usually done to reduce the quantity of the end product requiring ultimate disposal and to recover the bulking agent. For improved process and odour control, many new facilities cover or enclose all or significant portions of the system.
12.8.1.1.2 Windrow
In a windrow system, the mixing and screening operations are similar to those for the aerated static pile operation. Windrows are constructed 1 to 2 m high and 2 to 4.3 m at the base. The rows are turned and mixed periodically during the composting period. Supplemental mechanical aeration is used in some applications. Under typical operating conditions, the windrows are turned a minimum of five times while the temperature is maintained at or above 55°C. Turning of the windrows is often accompanied by the release of offensive odours. The composting period is about 21 to 28 d. In recent years, specialized equipment has been developed to mix the sludge and the bulking agent and to turn the composting windrows. Some windrow operations are covered or enclosed, similar to aerated static piles.

12.8.1.1.3 In-Vessel Composting Systems
In-vessel composting is accomplished inside an enclosed container or vessel. Mechanical systems are designed to minimize odours and process time by controlling conditions such as air flow, temperature, moisture, and oxygen concentration. The systems are compact and automated to control environmental conditions in an effort to reduce composting time. Air supplied by blowers is forced through the mixture which is periodically agitated. In-vessel designs include vertical plug flow, horizontal plug flow, and agitated bin reactors.

12.8.1.1.4 Design Considerations
The factors that must be considered in the design of a composting system are presented in Table 12.12.

Table 12.12 Design Considerations for Aerobic Sludge Composting Processes

<table>
<thead>
<tr>
<th>Item</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Sludge</td>
<td>Both untreated and digested sludge can be composted successfully. Untreated sludge has a greater potential for odors, particularly for windrow systems. Untreated sludge has more energy available, will degrade more readily, and has a higher oxygen demand.</td>
</tr>
<tr>
<td>Amendments and Bulking Agents</td>
<td>Amendment and bulking agent characteristics, such as moisture content, particle size, and available carbon, affect the process and quality of the product. Bulking agents should be readily available. Wood chips, sawdust, recycled compost, and straw have been used.</td>
</tr>
<tr>
<td>Carbon : Nitrogen Ratio</td>
<td>The initial C:N ratio should be in the range of 25:1 to 35:1 by weight. Carbon should be checked to ensure it is easily biodegradable.</td>
</tr>
<tr>
<td>Volatile Solids</td>
<td>The volatile solids of the composting mix should be greater than 50 percent.</td>
</tr>
<tr>
<td>Air Requirements</td>
<td>Air with at least 50 percent of the oxygen remaining should reach all parts of the composting material for optimum results, especially in mechanical systems.</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>Moisture content of the composting mixture should not be greater than 60 percent for static pile and windrow composting and not greater than 65 percent for in-vessel composting.</td>
</tr>
<tr>
<td>pH</td>
<td>pH of the composting mixture should generally be in the range of 6 to 9.</td>
</tr>
</tbody>
</table>
Temperature

The optimum temperature for biological stabilization is between 45 and 55 °C. For best results, the temperature should be maintained between 50 and 55 °C for the first few days and between 55 and 60 °C for the remainder of the composting period. If the temperatures are allowed to increase beyond 60 °C for a significant period of time, biological activity will be reduced.

Mixing and Turning

To prevent drying, caking, and air channelling, material in the process of being composted should be mixed or turned on a regular schedule as required. Frequency of mixing or turning will depend on the type of composting operation.

Heavy Metals and Trace Organics

Heavy metals and trace organics in the sludge and finished compost should be monitored to ensure that the concentrations do not exceed the applicable regulations for end use of the product.

Site Constraints

Factors to be considered in selecting a site include available area, access, site drainage/runoff, proximity to treatment plant and other land uses, odour control, climatic conditions, and availability of buffer zone.

Climate Change

Consider the site’s sensitivity and resilience to climate change parameters.

12.8.1.1.5 Co-Composting with Solid Wastes

Co-composting of sludge and municipal solid wastes may not require sludge dewatering. Feed sludges may have a solids content ranging from 5 to 12 percent. A 2 to 1 mixture of solid wastes to sludge is recommended as a minimum. The solid wastes should be pre-sorted and pulverized in a hammermill prior to mixing with sludge.

12.9 Sludge Recycling and Disposal Methods

When sludge recycling or disposal methods, such as utilization on land, land reclamation, incineration, lagoons and/or landfill are considered, pertinent requirements from the regulatory agency should be followed. Sludge quality will be a significant consideration in determine appropriate recycling or disposal options.

12.9.1 Sludge Utilization on Land

Land spreading of sludge may be a viable option depending upon the quality of the sludge and local conditions. Land application programs must also consider issues such as stabilization, storage, transportation, application, soil, crop and groundwater. Some jurisdictions allow sludge to be utilized on land provided that both the sludge and disposal area meet the requirements listed in Appendix G. In New Brunswick, only sludge that has undergone further treatment to reduce pathogens as listed in Section G.1 and meets equivalent metal concentrations as those listed for Category A compost in the Canadian Council of Minister’s of the Environment Guidelines for Compost Quality can be utilized on land.

Proponents considering land application should discuss their plans in advance with provincial regulatory officials to determine whether their sludge quality is appropriate for land application.

12.9.2 Sanitary Landfill

Sanitary landfilling of sludge, either separately or along with municipal solid waste, may be an acceptable means of ultimate sludge disposal.

The sludge must be stabilized prior to landfilling and daily soil cover must be provided. In Nova Scotia, organics are not normally permitted to be landfilled, however, it could be used to help grow grass or cover material. Sludge dewatering may be required prior to landfilling.
12.9.3 Incineration
Sludge incineration can be achieved in a multiple-hearth furnace. Particular attention is drawn to proper air pollution control of the stack gases to conform to the regulations of the regulatory agency. Sludge dewatering is required prior to incineration.

12.9.4 Land Reclamation
Sewage sludge can be used to reclaim strip-mine spoils or other low-quality land. Particular attention is drawn to the potential for water contamination and excessive accumulation of trace elements.

12.9.5 Energy/Resource Recovery
Energy and resource recovery processes include (1) recovery and recycling of marketable constituents of sludge or sludge incinerator ash, (2) co-incineration of sludge with combustible solid waste to generate power or steam or (3) pyrolysis of sludge to produce useful by-products such as fuel gases, oils, tars or activated charcoal. If such techniques are used, a detailed description of the process and design data should accompany the plans.

Appendix A

Workforce Requirements

A1. Operation and Maintenance Workforce

Figure A.1 outlines overall workforce requirements for each class of wastewater treatment facility over a wide range of average design flows. The information presented is to assist those seeking to project future wastewater treatment plant staffing requirements as a basis for planning of operations training programs. The data can also be used as planning a guide for staffing requirements for individual conventional treatment plants, provided recognition is given to the "average" nature of the estimating data, and judgement is applied regarding specific local circumstances.

Figure A.1 Manpower Requirements vs. Plant Size
A1.1. Wastewater Treatment Operator Core Competencies

The following section lists the core competencies for wastewater treatment operators. This table is not broken down for each class level of operator. Therefore, there may be job tasks and capabilities that are common in one level and not in others. Because operators may move from one facility to another, they should have a basic understanding of the common job tasks performed at various facilities throughout the United States and Canada. The Association of Boards of Certification (ABC) skill requirements for collection and treating system personnel have been included with permission from the Association of Boards of Certification.

The core competencies in the table are clustered into eight job duties that are performed by each level of wastewater treatment operator:

- Establish safety plans and apply safety procedures;
- Monitor, evaluate, and adjust treatment processes;
- Evaluate physical characteristics of waste stream;
- Perform and interpret laboratory analyses;
- Operate equipment; evaluate operation of equipment;
- Perform preventive and corrective maintenance; and
- Perform administrative duties.

Following each job duty is a listing of the job tasks and capabilities, in alphabetical order, that are associated with that duty.

A1.1.1. Establish safety plans and apply safety procedures

Plans and procedures include:
- Blood borne pathogens
- Chemical hazard communication
- Confined space entry
- Electrical grounding
- Facility upset
- First-aid
- General safety and health
- Lifting
- Lock-out/tag-out
- Personal hygiene
- Personal protective equipment
- Respiratory protection
- Slips, trips, and falls
- Spill response
- Traffic control
- Transportation

Required capabilities:
- Ability to assess likelihood of disaster occurring
- Ability to communicate safety hazards verbally and in writing
- Ability to demonstrate safe work habits
- Ability to follow written procedures
- Ability to identify potential safety hazards
- Ability to recognize unsafe work conditions
- Ability to select and operate safety equipment
- Knowledge of emergency plans
• Knowledge of potential causes and impact of disasters on facility
• Knowledge of safety regulations

A1.1.2. Monitor, Evaluate, and Adjust Processes

Processes include:
• Activated sludge
• Chemical addition
• Clarifiers
• Disinfection
• Grit removal
• Pumping of main flow
• Screens
• Solids handling

Required capabilities:
• Ability to adjust chemical feed rates, flow patterns, and process units
• Ability to calculate dosage rates
• Ability to confirm chemical strength
• Ability to evaluate, diagnose, and troubleshoot process units
• Ability to interpret Safety Data Sheets
• Ability to maintain processes in normal operating conditions
• Ability to measure and prepare chemicals
• Ability to perform basic math and process control calculations
• Knowledge of biological science
• Knowledge of general chemistry
• Knowledge of general electrical principles
• Knowledge of mechanical principles
• Knowledge of normal chemical range
• Knowledge of personal protective equipment
• Knowledge of principles of measurement
• Knowledge of proper application, handling, and storage of chemicals
• Knowledge of proper lifting procedures
• Knowledge of regulations
• Knowledge of wastewater treatment concepts and treatment processes

A1.1.3. Evaluate Physical Characteristics of Wastestream

Characteristics Include:
• Colour
• Flow pattern
• Foam
• Mixing pattern
• Odour
• Solids concentration
• Volume

Required capabilities:
• Ability to communicate observations verbally and in writing
• Ability to discriminate between normal and abnormal conditions

Appendices
- Knowledge of normal characteristics of wastewater

A1.1.4. Perform and Interpret Laboratory Analyses

Analyses Include:
- 5-day Biochemical Oxygen Demand
- Ammonia
- Chlorine residual
- Coliform
- Dissolved oxygen
- pH
- Settleable solids
- Temperature
- Total suspended solids
- Volatile suspended solids

Required capabilities:
- Ability to calibrate instruments
- Ability to follow written procedures
- Ability to interpret Safety Data Sheets
- Ability to perform laboratory calculations
- Ability to recognize abnormal analytical results
- Knowledge of biological science
- Knowledge of general chemistry
- Knowledge of laboratory equipment and procedures
- Knowledge of normal characteristics of wastewater
- Knowledge of principles of measurement
- Knowledge of proper chemical handling and storage
- Knowledge of quality control and assurance practices
- Knowledge of safety regulations
- Knowledge of sampling procedures
- Knowledge of Standard Methods for the Examination of Water and Wastewater

A1.1.5. Operate Equipment

Equipment Includes:
- Backflow prevention devices
- Blowers and compressors
- Chemical feeders
- Computers
- Digesters
- Drives
- Electronic testing equipment
- Engines
- Generators
- Heavy vehicles
- Hydraulic equipment
- Instrumentation
- Motors
- Pneumatic equipment
- Pumps
• Valves

Required capabilities:
• Ability to adjust operation of equipment
• Ability to evaluate operation of equipment
• Ability to monitor operation of equipment
• Knowledge of electrical & mechanical principles
• Knowledge of function of tools
• Knowledge of safety regulations
• Knowledge of start-up and shut-down procedures
• Knowledge of wastewater treatment concepts

A1.1.6. Evaluate Operation of Equipment

Characteristics Include:
• Read meters
• Read charts
• Read pressure gauges
• Check speed of equipment
• Measure temperature of equipment
• Inspect equipment for abnormal conditions

Required capabilities:
• Ability to discriminate between normal and abnormal conditions
• Ability to monitor and adjust equipment
• Ability to report findings
• Knowledge of electrical & mechanical principles
• Knowledge of process control instrumentation

A1.1.7. Perform Preventive and Corrective Maintenance

Equipment Includes:
• Blowers and compressors
• Chemical feeders
• Generators
• Instrumentation
• Motors
• Pumps

Required capabilities:
• Ability to assign work to proper trade
• Ability to calibrate equipment
• Ability to diagnose and troubleshoot units
• Ability to differentiate between preventive and corrective maintenance
• Ability to discriminate between normal and abnormal conditions
• Ability to follow written procedures
• Ability to perform general maintenance
• Ability to record information
• Knowledge of electrical and mechanical principles
• Knowledge of facility operation and maintenance
• Knowledge of safety regulations
• Knowledge of start-up and shut-down procedures

A1.1.8. Perform Administrative Duties

Tasks Include:
• Control employee work activities
• Establish recordkeeping systems for facility
• Plan and organize work activities
• Record information relating to facility performance
• Respond to complaints
• Write internal, state, and federal reports

Required capabilities:
• Ability to determine what information needs to be recorded
• Ability to evaluate employee & facility performance
• Ability to interpret and transcribe data
• Ability to organize information & follow written procedures
• Ability to perform basic math
• Ability to translate technical language into common terminology
• Knowledge of facility operation & maintenance
• Knowledge of monitoring & reporting requirements
• Knowledge of principles of general communication
• Knowledge of principles of management
• Knowledge of principles of public relations
• Knowledge of principles of supervision
• Knowledge of recordkeeping functions & policies
• Knowledge of regulations

A1.2. Job Descriptions

Job descriptions for the types of personnel commonly employed for the operation and maintenance of conventional wastewater treatment systems are defined in the USEPA Manual "Estimating Costs and Manpower Requirements for Conventional Wastewater Treatment Facilities", contract No. 14-12-462.

A job description for a specific occupation may include details from several of the core competency job duties from Section A1.1 depending upon the flexibility required. However, a good job description should include but is not necessarily limited to the following:
• List items or processes that an individual must operate.
• State if monitoring of gauges or meters is required.
• Discuss interpreting of any meter or gauge readings for process control actions.
• List any logs or records to be maintained.
• Outline any maintenance duties required.
• State any other title that an individual might carry.
• Discuss decision making requirements.
• State responsibilities and authority given to an individual in the job being described.
• List any report or budget functions that must be performed.
• Discuss any supervisory or inspection functions.
A1.3. Suggested References

The following manuals are recommended for operators looking for references on how to operate wastewater treatment plants.

California State University, Sacramento
Operation of Wastewater Treatment Plants, Volumes 1 and 2
Advanced Waste Treatment
Utility Management

To order, contact Office of Water Programs, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819-6025, phone: (916) 278-6142, fax: (916) 278-5959 or e-mail: wateroffice@csus.edu

Water Environment Federation
Operation of Municipal Wastewater Treatment Plants, Manual of Practice No. 11
Design of Municipal Wastewater Treatment Plants, Manual of Practice No. 8
WEF/ABC Certification Study Guide for Wastewater Treatment Personnel

For more in-depth references on specific aspects of wastewater treatment, please contact the Water Environment Federation for a complete list of Manuals of Practice.

To order, contact Water Environment Federation, 601 Wythe Street, Alexandria, VA 22314-1994, phone: (800) 666-0206, fax: (703) 684-2492 or e-mail: pubs@wef.org.
Appendix B
Treatment Process Control

B1. Instrumentation and Controls
The requirements for treatment process instrumentation and controls will depend on the WWTP size, location and process type. In general, instrumentation and controls should provide safe and efficient manual and automatic operation of all parts of the plant, with minimal operator effort, and all automatic controls should be provided with manual back-up systems.

When making decisions relating to instrumentation and control, the following factors should be considered:
- Plant size and complexity;
- Regulatory requirements;
- Hours of attended operation;
- Parameters which are useful for process control;
- Primary element reliability;
- Primary element location;
- Whether each type of equipment should be manually, remotely and/or locally controlled;
- Data storage and recording requirements;
- Whether data acquisition should be central or distributed;
- Potential chemical and energy savings; and
- Safety.

B1.1. Process Control Techniques
There are two main types of process control techniques within a wastewater treatment plant. These include manual control and on-line control. Under the manual control system there is limited automatic control and the operator is responsible for decisions and actions. On-line control involves a multi-purpose computerized system with limited scope for modification or a dedicated purpose system with standard hardware and customized software.

Whether process control involves manual or on-line control, or a combination of both, the operation and maintenance manual shall fully describe specific process control techniques.
B1.2. Remote Control Vs. Local Control

Where some parts of a plant may be operated or controlled from a remote location, local control stations should be provided and shall include the provision for preventing operation of the equipment from the remote location. The designer must decide which equipment will be controlled locally and which will be controlled from a remote location, and whether control will be automatic or manual.

B1.3. Supervisory Control and Data Acquisition (SCADA)

SCADA systems should be used to control and monitor wastewater treatment equipment and wastewater collection systems. If radio-based telemetry systems are used, special attention should be given to the design and layout to eliminate any potential for radio frequency interference (RFI).

Ensure that support for any proprietary software will be available from the vendor once the project has been accepted.

B1.4. Recommended Parameters

For effective operation of larger wastewater treatment facilities the following parameters should be measured, if present. Some may not be required or relevant for smaller facilities, or may be different.

- Flowrate for raw wastewater, by-pass flows, train-specific flows, and final effluent flow;
- Dissolved oxygen levels;
- Return Activated Sludge (RAS) flows, and Waste Activated Sludge (WAS) flows;
- Sludge blanket levels and sludge concentrations;
- Chemical dosages,
- Ultraviolet Transmittance;
- Effluent pH;
- Raw and digested sludge flow, digester supernatant flows;
- Digester gas production;
- Anaerobic digester temperature;
- Hazardous gas monitoring;

B1.5. Types of Instruments

The different types of instruments that may be required to measure the previously mentioned parameters are classified as primary element devices, which alter a signal from a physical process to make it suitable for use by a transmitter. These devices are broken down into function groups with a brief description of the process application.

B1.5.1. Flow Measurement

Magnetic Flowmeters (Mag Meters)

- Materials - The liner for the meter varies depending on the application. To resist moderate amounts of abrasion, use Polyurethane, Butyl rubber, Neoprene or Polytetrafluoroethylene. Where corrosion is likely to occur, use ceramic or Polytetrafluoroethylene. Stainless steel electrode material should be used where corrosion risk is high. Hastelloy electrode material should be used where corrosion risk is high.
- Installation - Generally requires five straight pipe diameters upstream of the meter and three downstream of the meter, free of valves or fittings. Meters may be installed on horizontal, vertical or sloping lines. Electrodes must be in the horizontal plane for continuous contact with the fluid or slurry being metered. The operating velocity required is 1–10 m/s for liquids without solids and 1.5–7.5 m/s for liquids containing solids. When used to meter liquids containing solids, a continuous electrode cleaner or clean out tee should be installed.
- Applications - These meters are suitable for Influent Wastewater, Primary Sludge, RAS, WAS, Digested
Sludge and Final Effluent. These meters should not be used for Digester Gas or liquid streams with a solids content greater than 10% by weight.

Ultrasonic Flowmeters
- **Flowmeter Construction** - The flowmeter consists of an electronics housing, transducers and pipe section. These can also be fitted to existing pipes by drilling holes for the transducer hardware or by using external transducers on the outside of the pipe. When installed on existing pipes, the pipe material should be checked to assure it will not dampen the sonic signal as this will adversely affect performance.
- **Installation** - Generally requires ten to twenty straight pipe diameters upstream of the meter and five downstream of the meter, free of valves or fittings. Meters can be installed on horizontal, vertical or sloping lines as long as the pipe sections are always full. The operating velocity required for these meters will be between 1 to 10 m/s.
- **Applications** - Transmittance styles are not recommended for influent wastewater, primary sludge, thickened sludge, nitrification RAS, or nitrification WAS. Reflective styles are not recommended for primary effluent, secondary clarifier effluent final effluent or process wash water.

Turbine Flowmeters
- **Flowmeter Construction** - The flowmeter usually consists of meter body with rotor blades and a magnetic pickup. The pickup is often connected to electronic display units or a totalizer.
- **Installation** - Installation of turbine flow meters generally require a minimum of stream of the meter free of valves or fittings. Meters may be installed on horizontal or vertical pipelines.
- **Applications** - Turbine flow meters are recommended for applications involving natural gas, compressed digester gas.

Flumes and Weirs (Parshall Flume)
- **Installation** - Affected by upstream channel arrangement; at least ten channel widths upstream are recommended. Must be installed level.
- **Applications** - Open channel flow measurement.

B1.5.2. Suspended Solids Measurement (Turbidity)
- **Installation** - Installation details for turbidity analyzers are unique to each manufacturer. The manufacturer's recommendations should be followed.
- **Applications** - Turbidity analyzers are recommended for applications involving suspended solids concentrations less than 100 mg/l.

B1.5.3. Suspended Solids Measurement (Optical)
- **Installation** - Unique to each manufacturer. The manufacturer's recommendations should be followed.
- **Applications** - Recommended for solids concentrations from 20 mg/L to 8%, e.g., RAS, WAS and mixed liquor.

B1.5.4. Dissolved Oxygen Measurement (Galvanic)
- **Installation** - Installation details for dissolved oxygen analyzers are usually related to the choice of placement of the analyzer in the process fluid. The analyzers generally require fairly frequent maintenance and this should be considered in determining the location for installation.
- **Applications** - Recommended for oxygen concentrations from 0 to 20 mg/L.

B1.5.5. Level Measurement

Ultrasonic Sensor
• **Installation** - The mounting location of the sensor is determined from restrictions established by the manufacturer. Typically the sensor must be mounted a minimum distance above the high liquid level and should be located away from tank walls or other obstructions that may cause false echoes.

• **Applications** - Used in many level and flow applications; not suitable for dense and persistent foam.

Float

• **Installation** - Normally located in a stilling well when turbulence is expected.

• **Applications** - Commonly used for high and low level alarms and for controlling pump starts and stops.

Capacitance

• **Installation** - The installation practices can vary and the manufactures recommended installation should be used.

• **Applications** - For continuous level measurement and also as switches for alarms or start/stop control.

B1.5.6. Pressure Measurement

Bourdon Tubes

• **Installation** - The installation practice should include the use of block and bleed valves.

• **Applications** – For pressure indication only. Pressure range 0 to 35000 kPa.

Bellows

• **Installation** - The installation practice should include the use of block and bleed valves.

• **Applications** - For pressure indication only. Pressure range 0 to 2000 kPa.

Diaphragms

• **Installation** - The installation practice should include the use of block and bleed valves. Transmitters should be installed according to manufacturer's recommendations. Temperature extremes should be avoided and location should be as close as possible to the process measure site.

• **Applications** - For pressure indication or transmitter output. Pressure range 0 to 3500 kPa.

B1.5.7. Temperature Measurement

Thermocouples

• **Installation** - Installation with a thermowell is recommended.

• **Applications** - Wide range of suitability, but check range of unit.

Resistance Temperature Detector

• **Installation** - Installation with a thermowell is recommended.

• **Applications** - Suitable for temperature ranges of 0 to 300°C, but check range of unit.

Thermistor

• **Installation** - Installation with a thermowell is recommended.

• **Applications** - Suitable for temperature ranges of 0 to 300°C, but check range of unit.

Thermal Bulb

• **Installation** - No special installation requirements.

• **Applications** - Suitable for temperature ranges of 0 to 500°C, but check range of unit.
B1.6. Process Controls

B1.6.1. Lift Stations
Lift stations require simple and dependable instrumentation and control systems. The parameters that should be monitored include:

- Level;
- Flow;
- Pressure;
- Temperatures;
- Hazardous gas levels; and
- Status and alarm conditions.

The monitoring and control requirements will vary for each individual case based on the size, location, and economic considerations.

B1.6.1.1. Level Control
Single-speed pumps are typically controlled on start and stop levels. The level in the wet well increases to the point where a duty (or lead) pump is required to start. A lag and then a follow pump may be started if the level continues to increase. Pumping continues until a pump stop level is reached at which time the duty pump stops, or a series of stop levels will be reached and the lag and follow pumps stop prior to the duty pump. The pump start/stop control can be performed using any one of several level elements.

Variable speed pumps are typically controlled to maintain a level set point in the wet well. This requires a feedback type of control in which the measured variable (level) is compared to a set point value and the final control element is modulated in order to maintain the set point value. This requires reliable analog level measurement to function properly.

Regardless of the type of level control used, the system should include a separate low level lockout and high level alarm.

B1.6.1.2. Flow Monitoring
The flow metering element should be selected carefully to ensure that there are no obstructions where clogging may occur. Bypass and isolation of the flow-metering element should be provided for routine maintenance activities. The flow-metering device should be connected to the control system or to a recording and totalizing device, or both. This provides for a record of flows out of the lift station. It can also be used to help identify possible problems in the discharge piping or force main.

B1.6.1.3. Pressure Monitoring
Monitoring of the system discharge pressure can be useful in identifying possible problems in the discharge piping or force main and in monitoring pump performance. The pressure-metering device should be connected to the control system or to a recording device, or both.

B1.6.1.4. Pumps and Motors
The following parameters should be monitored:

- Pump bearing temperature;
- Pump bearing vibration;
- Pump speed for variable speed applications;
- Pump discharge pressure;
- Motor voltage and current;
- Motor hours of operation;
• Motor bearing temperature; and
• Motor windings temperature.

B1.6.1.5. Alarms
Lift stations alarms should be as outlined in Section 3.2.12.

B1.6.2. Mechanical Bar Screens
Three methods are used to control the operation of mechanical bar screens:
• Simple manual start/stop, which requires the presence of the operator at the screen in order to start and stop the screen.
• Automatic activation by differential level. This method uses the differential level across the screen to provide the start condition. The screen should run at least one complete screen cycle before stopping. The screen can be called to stop when the differential level is returned to a nil value, the final stop should be controlled using a sensor to determine cycle completion (i.e. limit switch, proximity sensor, or timer). In addition, a timer should be provided to initiate a cleaning cycle at regular intervals regardless of actual head loss. There should be an alarm signal with a head loss set at a point higher than the automatic start of the mechanical bar screen.
• Automatic activation by timer with differential level as emergency start condition. This method uses the differential level across the screen to provide secondary start condition. The screen should run at least one complete screen cycle before stopping. The stop signal should be controlled using a sensor to determine cycle completion (i.e. limit switch, proximity sensor, or timer). There should be an alarm signal with a head loss set at a point higher than the automatic start of the mechanical bar screen.

B1.6.3. Primary Treatment
B1.6.3.1. Raw Sludge Pumping
Raw sludge pumping controls should incorporate the following features:
• Automatic or manual selection of duty pump;
• On-line sludge density metering for control and monitoring;
• On-line sludge flow monitoring and totalization;
• On-line adjustable sludge density control;
• Individually selectable hopper pumping controls where required;
• Manual override for automatic controls;
• On-line sludge blanket level monitoring and alarming;
• On-line sludge pump monitoring and control;
• Sludge density feedback control for variable speed pumping with manual override;
• On-line sludge pump speed monitoring and control with manual override; and
• On-line monitoring and control of primary tank scraper mechanisms.

B1.6.3.2. Scum Pumping
The scum pumping controls should incorporate the following features:
• Automatic or manual selection of duty pump;
• Manual override for automatic controls;
• On line sludge blanket level monitoring and alarming;
• Automatic controls consisting of high and low scum tank level for starting and stopping scum pumps;
• High scum tank level alarm;
• On line scum pump speed monitoring and control with manual override; and
• Scum tank flushing system for scum tank cleaning.
B1.6.4. Secondary Treatment Controls

B1.6.4.1. Dissolved Oxygen (DO) Control
Automatic DO control systems should be used to control the rate of air supply to aeration tanks. The following methods may be used:

- Closed Loop Control (Feedback Control) - Closed loop control consists of on-line dissolved oxygen analyzers providing feedback control to an airflow control device. The dissolved oxygen reading is compared to the dissolved oxygen set point. The resultant error signal is used to increase or decrease the rate of air flow to the aeration tanks. Automatic dissolved oxygen control should always be equipped with manual override.

- Feed Forward Control - Feed forward control consists of a fixed volume of air being delivered to the aeration tanks for a given wastewater flowrate. This system may use on-line dissolved oxygen analyzers but these are for monitoring only and do not provide feedback to the air flow control elements. Process status and alarms should be provided for dissolved oxygen level, blower operating parameters, air flow control elements.

B1.6.4.2. Return Activated Sludge Control
The Return Activated Sludge pumping controls should incorporate the following features:

- Automatic or manual selection of duty pump;
- Variable speed pumping;
- Return activated sludge flow monitoring;
- Feedback control to match pumping rates to flow set points;
- Individual control of sludge return rate from individual final clarifiers;
- Manual override for automatic controls; and
- On-line monitoring of return sludge flowrate, pump speed and status.

B1.6.4.3. Waste Activated Sludge Control
The Waste Activated Sludge pumping controls should incorporate the following features:

- Automatic or manual selection of duty pumps;
- Variable speed pumping;
- Waste Activated Sludge flow monitoring;
- Feedback control to match pumping rates to flow set points;
- Manual override for automatic controls; and
- On-line monitoring of Waste Sludge flowrate, pump speed and status.

B1.6.5. Chemical Control System
The most basic chemical dosing consists of a feeder or chemical metering pump that will dose at a fixed ratio to the influent or effluent flow of the plant, with no analyzer or feedback control. More specific chemical dosing may also be based on parameters such as return sludge flowrate, or have analyzers and possibly feedback control. Chemical dosing requirements will vary widely depending on performance requirements and the specific process used.

B1.6.6. Ultraviolet Disinfection Control System
The disinfection of final plant effluent using ultraviolet light in smaller plants is usually not adjusted, but in larger plants it is controlled using a feed-forward control system. Lamps and or lamp channels are turned on based on measured plant effluent flow. UV transmittance analyzers may be used for monitoring system performance, and can also be used to adjust the numbers of lamps or channels needed. Alarms for low UV intensity should be provided.
B1.7. Control and Monitoring Systems

Control and monitoring systems can be a conventional system with recorders, indicators, switches, push buttons, indicating lights, control panels, etc. or it can be a computerized control system that utilizes various configurations of hardware and software to provide the control required. Computerized systems can be separated into two groups, PLC (Programmable Logic Controller) Systems and Distributed Control Systems.

B1.7.1. Conventional Relay Control Systems

The conventional system is a passive system with limited automatic control, where the operator is responsible for decisions and actions that control the process.

B1.7.2. PLC Control Systems (Programmable Logic Controllers)

The PLC based system is a multipurpose system with extensive scope for modification. The plant status, alarms, motor starters, meters and analyzers are all wired into input/output cards located in what are called racks. The racks may be mounted separately or placed in specific plant areas to reduce wiring costs. The input/output racks are associated with controllers that are programmed to perform the required process control functions. Changes can generally be made relatively easily by modification of or addition to the PLC controller programs.

Plant personnel require process information in real-time or in near real-time. The PLC systems accomplish this by means of a Human-Machine-Interface (HMI). The HMI may be dedicated hardware and software or may come in the form of personal computers utilizing HMI software and connected to the PLC communications system. These systems vary widely in their capabilities and performance. The selection of hardware and software should be done carefully to assure current performance and future supportability and expendability.

B1.8. Controls System Design Documents

Complete design documents should be prepared to ensure that construction can be completed correctly and also to properly record the system for future reference. The following are required in the design documents:

- Design and construction standards, specifications and installation details;
- Panel sizing and general arrangements;
- Control system functional requirements;
- Control component and instrument data sheets;
- Operator interface and control hardware and software specifications including input/output lists; and
- Control system programming and packaged system configuration standards, structure and scope.

B1.9. Control System Documentation

The following documents should be provided following completion of the control system:

- Record drawings to show any changes to the design and including any drawings produced during construction;
- Annotated listings of control system programs and packaged system configuration;
- Manufacturer's literature for all control and instrumentation components;
- Final wiring diagrams complete with wire and terminal coding;
- Motor control schematics;
- Instrument loop diagrams;
- Panel wiring and layout details;
- PLC or DCS wiring schematics;
- Instrument calibration sheets; and
- Operating instructions.

Appendices
B1.10. Controls System Training

Adequate training shall be provided to the plant operating and maintenance staff so that the system can be operated to meet the design criteria.

B2. Laboratory Control

B2.1. Sampling

Sample data is required for a number of reasons, including the following:

- Demonstrate that the effluent quality is within acceptable guidelines;
- Effectively control unit operations;
- Distribute charges for treatment among the various municipal districts and industries involved;
- Allow design of future treatment facilities as the plant is expanded;
- Predict the effect of the effluent on the receiving waters.

B2.1.1. Sampling Procedures

Appropriate sampling point locations must be established independently for each treatment plant.

Some widely applicable principles for sampling are listed below:

- Sample point locations should have completely mixed wastewater or sludge, as far possible;
- Provide proper sampling equipment and use all safety precautions;
- Any floating materials, growths, deposits, etc., including particles greater than 0.6 cm (1/4 in.) in diameter should be excluded when sampling;
- Immerse sample bottles in ice water to inhibit bacterial action if samples are to be kept for an hour or more prior to testing, or if they are to be shipped;
- Carefully label all sample bottles; and
- Consider the plant’s daily flow variation and detention time through the units so that influent and effluent samples relate to the same waste.

B2.1.2. Frequency of Sampling

Required frequency of sampling depends on the treatment plant size and loading, the variability of the waste stream, the severity of possible effects on receiving water and public health, regulatory sampling requirements, number of staff available, and hours of supervision. Routine sampling to monitor plant performance and effluent quality should be undertaken regularly. More intensive sampling and testing may be required in the event of an upset, to assess unit operation performance and the effect of corrective action.

Figure B.1 presents a sample format for a Laboratory Sampling Program. Please note that different plants could have very different operational sampling programs, and that the regulatory sampling requirements also vary from plant to plant.
Figure B.1 Sample Laboratory Testing Program

<table>
<thead>
<tr>
<th>Type of Sample</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Sewage</td>
<td>C,D</td>
</tr>
<tr>
<td>Primary Effluent</td>
<td>C,D</td>
</tr>
<tr>
<td>Secondary Effluent</td>
<td>C,D</td>
</tr>
<tr>
<td>Chlorine Cont. Tank</td>
<td>G,E</td>
</tr>
<tr>
<td>Mixed Liquor</td>
<td>C,D</td>
</tr>
<tr>
<td>Plant Effluent</td>
<td>C,W</td>
</tr>
<tr>
<td>Raw Sludge</td>
<td>C,W</td>
</tr>
<tr>
<td>Digested Sludge</td>
<td>G,W</td>
</tr>
<tr>
<td>Settlesable Solids</td>
<td>C,D</td>
</tr>
<tr>
<td>Suspended Solids</td>
<td>C,D</td>
</tr>
<tr>
<td>Bod</td>
<td>C,D</td>
</tr>
<tr>
<td>Chlorine Residual</td>
<td>C,W</td>
</tr>
<tr>
<td>Grease</td>
<td>C,D</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>C,W</td>
</tr>
<tr>
<td>Coliform Bacteria</td>
<td>C,D</td>
</tr>
<tr>
<td>Volatile Suspended Solids</td>
<td>C,W</td>
</tr>
<tr>
<td>Dissolved Oxygen</td>
<td>C,W</td>
</tr>
<tr>
<td>Total Solids</td>
<td>C,W</td>
</tr>
<tr>
<td>Total Volatile Solids</td>
<td>C,W</td>
</tr>
<tr>
<td>pH</td>
<td>C,W</td>
</tr>
</tbody>
</table>

B2.2. Process Control Samples and Analyses

The following list contains the samples and analyses which may be required for process control within specific process streams.

Influent or Raw Sewage
- Settlesable solids
- Total solids
- Suspended solids
- Volatile suspended solids
- BOD
- COD
- pH
- Phosphates
- Ammonia
- Total Kjeldahl Nitrogen (TKN)
- Nitrates
- Chlorides

Grit
- Moisture content
- Dry solids

Appendices
• Volatile solids
• Sieve tests

Primary Effluent
• Total solids
• Suspended solids
• Volatile suspended solids
• BOD
• pH
• COD
• Total phosphate
• Orthophosphate

Aeration/Mixed Liquor
• Half-hour settling test of mixed liquor
• Suspended solids in mixed liquor
• Volatile suspended solids in mixed liquor
• Sludge volume index
• Dissolved oxygen
• pH
• Solids in return and waste activated sludge
• Oxygen uptake rate

Secondary Effluent
• Total solids
• Suspended solids
• Volatile suspended solids
• BOD
• pH
• COD
• Total phosphate
• Orthophosphate

For lagoons and oxidation ponds it is most important that careful observation of the condition of the lagoon should be noted and recorded, particularly the presence of colour, algae or odours.

Lagoon Contents
• DO
• Temperature
• pH

Chlorine Contact Tank
• Chlorine residual
• Fecal coliform bacterial count

Final Effluent
• Total solids
• Suspended solids

Appendices
• Volatile suspended solids
• BOD
• Chlorine residual
• Fecal coliform bacterial count
• Dissolved oxygen (DO)
• pH
• COD
• Total phosphate
• Orthophosphate
• Ammonia

Raw Sludge
• pH
• Dry solids
• Volatile solids

Waste Activated Sludge Thickening
• Solids in feed sludge
• Solids in discharge sludge
• Suspended solids in filtrate or centrate
• Percent volatile in suspended solids of filtrate or centrate

Digested Sludge and Digester Supernatant
• pH
• Total solids
• Volatile solids
• Volatile acids
• Alkalinity

Digester Gas
• Percent methane
• Gas production

Cake from Vacuum Filter or Centrifuge
• Total solids
• Volatile solids
• Phosphates
• Nitrates

Filtrate or Centrate
• pH
• Total solids
• Suspended solids
• Volatile suspended solids

Incinerator Ash
• Dry solids
• Volatile solids
B2.3. Owner/Operator Responsibility
The owner/operator of a wastewater treatment or collection facility shall be responsible for the sampling and analysis requirements for the proper operational control of the facility. These requirements shall be in accordance with Operations Section 3, and shall ensure the proper control of day-to-day operations of the system.

B2.4. Regulatory Agencies' Responsibility
The regulatory agencies are only responsible for compliance enforcement. They shall not be responsible for any aspect of process control at any wastewater treatment or collection facility.

B2.5. Sampling References
The following is a list of references which will assist operating staff in performing the necessary sampling, laboratory and control procedures to effectively operate a treatment system:
- "Standard Methods for the Examination of Water and Sewage," APHA/AWWA/WEF;
- WEF Manual of Practice No. 18, "Simplified Laboratory Procedures for Wastewater Examination";
- WEF Manual of Practice No. 11, "Operation of Wastewater Treatment Plants";
- Activated Sludge Process Control and Troubleshooting Chart:
Appendix C
Operations and Maintenance Manuals

C.1 Use of Manuals
The purpose of an O & M Manual is to give treatment system personnel the proper understanding, techniques and references necessary to efficiently operate their facilities. The O & M Manual should help to ensure the performance record of a treatment system remains high. The manual should thus serve as a tool for operation and maintenance to the personnel of the plant.

C.2 Preparation of O&M Manuals
Obtain input from experienced treatment system operators when developing O & M Manuals. This input, combined with the design engineer's expertise, is essential to any good manual. If possible, operations input should be obtained from persons with experience in the same processes as those described in the manual.

O & M Manual preparation requires timely and accurate information from suppliers of wastewater treatment equipment for incorporation in O & M Manuals. The information should be tailored for the specific equipment item supplied. This might include adding sections to project specifications calling for submittal of preliminary O&M information prior to paying for equipment.

O & M Manuals should possess the necessary flexibility to remain viable tools to operating personnel, in the event of changing process units or treatment system operating and maintenance needs. O & M Manuals shall contain relevant Climate Change threshold information, including maximum receiving water elevations, maximum flow through the plant, and other factors that cause critical conditions in the plant.

The key to an O & M Manual's ultimate success is the language used and the writing style. It must be written with the end user in mind.

C.3 Operations and Maintenance Manuals Checklists
The checklists presented in this section are intended to be a flexible guide for the preparation of an O&M Manual for wastewater treatment systems and wastewater pumping stations and/or collection system. They can be modified to fit the particular system at hand, since project-specific requirements may be different.
C.4 O & M Manual Checklist for WWTPs
The following checklist is adapted from that accessed March 13, 2020 at:

C.5 O & M Manual Checklist for Pumping Stations
The following checklist is adapted from that accessed March 13, 2020 at

Table C.2 Pump Station O&M Manual Review Checklist

<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1 Introduction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Purpose of Manual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Use and Updating Information for this Manual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Project Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Type, capacity and unit processes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. New or Upgrade</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. If upgrade, describe work done and identify equipment upgraded</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Collection system work, if any</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Site location map</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Service area</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Text description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Residential, industrial and commercial contributions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Service area map showing force mains, gravity sewers and related pump stations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Design Criteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Average daily flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Peak flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Pump sizing and capacities, operating heads/inlet and outlet pressures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Wet well dimensions and capacities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 2 System Operation and Control

1. Identification, location and detailed description of each unit process and their relationship to each other
 a. Screening, automatic and/or manual, bypass channel
 b. Grinding
 c. Grit removal
 d. Flow measurement and calibration
 e. Pumps
 f. Motors
 g. VFD’s
 h. Standby power (include a comprehensive list of what equipment is powered or not powered by stand-by power)
 i. HVAC (air changes, controls, etc)
 j. Continuous monitoring for oxygen deficiency and combustible gas (include locations of sensors and readouts)
 k. Sump pumps
 l. SCADA or other instrumentation
 m. Level control system (description, diagram and set points)
 n. Alarm conditions and set points for all equipment
 o. Hoisting equipment
 p. Odour control

2. Detailed operating procedures for each unit process under normal and alternate operation
 a. Start-up and shut-down procedures/drainage (include control panel graphics or pictures to illustrate)
 b. Bypassing procedures
 c. Emergency operation
 d. Expected unit process performance
 e. Manual and automatic operation
3. Operational Problems
 a. Mechanical problems
 b. Troubleshooting guides
 c. High flow procedures

4. Diagrams and illustrations (no larger than 11 x 17)
 a. Piping, valve and pump layout
 b. Wet well layout, plans and elevations
 c. Alternate flow paths
 d. Dry well layout
 e. Valve identification and normal operational settings
 f. Digital pictures of MCC panels or actual equipment
 g. Instrumentation

5. Lab tests, if applicable

6. Service area collection system, if new
 a. Layout
 b. Cleanouts, air relief valves
 c. Operation and maintenance
 d. Inspection and cleaning schedule
 e. Cleaning procedure
 f. Identification of low lying manholes or other areas subject to flooding or overflowing

Chapter 3 Maintenance
1. Provide summaries of routine preventative maintenance activities based upon manufacturer’s recommendations for each specific major piece of equipment (simply referring to the manufacturer’s O&M manual will not suffice)
 a. Lubrication schedule and type of lubricant
b. Special tools

c. Valve and equipment exercising

d. Belt and packing replacement

e. Mechanical seals

2. Generator

a. Exercise under load & provide an exercise schedule

b. Check transfer switch

c. Oil and coolant specifications

d. Generator log with O&M records

3. Spare parts list (simply referring to the manufacturer’s O&M manual will not suffice)

a. Are spare parts interchangeable with other pump stations?

4. Preventative maintenance program

a. Existing system

b. Recommended system

c. Equipment numbering system

d. Maintenance record system

e. Computerized maintenance management

f. Planning and scheduling

5. General maintenance practices and procedures

a. Mechanical maintenance

b. Electrical maintenance

6. Inventory system

7. Housekeeping

Chapter 4 Personnel

1. Personnel requirements
Appendix

<table>
<thead>
<tr>
<th>Staffing plan</th>
<th>Estimate of operational time</th>
<th>Frequency of visits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Job titles, job descriptions, qualifications and experience for required positions

3. Training & certification

Chapter 5 Alarm & Notification System

1. Summary of all alarms
2. Where are alarms displayed?
3. Transmission of alarm signal to operations personnel
4. Periodic testing of alarm conditions and transmission devices

Chapter 6 Recordkeeping

1. Importance of recordkeeping
2. Location of records
3. Review of recording keeping procedure
4. Types of records and example forms
 - Daily logs or station checklists
 - Maintenance records
 - Utilities records
 - Fuel, gas, chemical, etc. usage
 - Unusual events or emergency conditions
 - Accident reports
4. Reporting procedures

Chapter 7 Safety

1. Management and operator responsibilities
2. Sewer hazards
 a. Common gases with acceptable and harmful concentrations

3. Mechanical hazards

4. Electrical hazards, including overhead wires

5. Chemical hazards and proper handling and storage

6. Tripping and falling hazards/improper lifting

7. Personal hygiene
 a. Infections
 b. Health hazards
 c. Immunization programs & recommended shots

8. Explosion and fire hazards

9. Road hazards & traffic control

10. Confined space entry procedures (one must be provided, either existing or an example)

11. Lock-out /tag-out procedures and program

12. Proper housekeeping

13. SDS sheets for bulk chemicals

14. List of recommended and existing safety equipment

15. Training

16. Safety reference library

Chapter 8 Emergency Operating Plans and Procedures

1. Vulnerability analysis for the following emergency conditions
 a. Power failure
 b. Equipment failure
 c. Natural disasters
 i. Flooding
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ii. Hurricane or strong winds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii. Earthquake</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv. Freezing conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Hydraulic overloading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Identify low lying manholes or other areas of concern and provide elevations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Provide locations of nearby wells or surface waters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Ruptures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Bypassing options</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Upstream/downstream manholes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii. Emergency pumping connections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Sewer blockages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Spills of oils, toxics, or hazardous materials into the sewer system or at the pump station</td>
<td></td>
<td></td>
</tr>
<tr>
<td>i. Explosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>j. Fire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k. Failure of emergency warning system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>l. Labour strikes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Personnel injury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n. Other emergency situations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Methods to reduce vulnerability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Emergency response for each condition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Follow-up investigation and prevention plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Sewer Overflow Reporting Procedure (Provincial and Federal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Emergency notification system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Notification of downstream water users</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Complete emergency contact telephone list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Provincial agencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Town or city officials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Provincial Emergency Services (Police, Fire Department)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Chemical spill response units</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. Hazardous waste/oil spill cleanup firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Local hospitals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Emergency pumping equipment suppliers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. Emergency power equipment suppliers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. Utility providers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. General contractors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. Septage hauling firms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Electricians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. SCADA technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Downstream water users</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Emergency equipment inventory and location of equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. Personnel training & interaction with local emergency response entities</td>
</tr>
</tbody>
</table>

Chapter 9 Utilities

1. Suppliers and contact information for all utilities
 a. Electrical
 b. Gas, propane, fuel oil
 c. Water
 d. Telephone
 e. Alarm communications/SCADA

2. Provide exact locations of emergency shut-off valves, backflow preventers, etc.
3. Provide sizes and locations of bulk storage tanks
4. Provide a Spill Prevention Containment and Control Plan for bulk storage tanks

Chapter 10 Electrical and Control Systems

1. General description of electrical and control system
| 2. Describe MCC panels including schematics or simple drawings |
|---------------|-----------------|
| **Chapter 11 SCADA (if applicable)** |
| 1. Detailed description including SCADA graphics |
| **Appendices** |
| 1. Schematics and flow diagrams showing all pertinent equipment and major piping (11x17max) |
| 2. Schematic of collection system, if applicable |
| 3. Detailed design criteria |
| 4. Sample forms including daily operational checklists |
| 5. Piping color codes |
| 6. Equipment suppliers information |
| 7. List of all manufacturers manuals |
| 8. Other pertinent information |
| 9. SCADA graphics overview |
Appendix D

Sludge Utilization on Land

The following guidelines were formulated to provide the minimum criteria for municipal sludge utilization on land, where applicable. Sewage sludge can be useful to crop and soil by providing nutrients and organic matter. Proponents considering land application should discuss their plans in advance with provincial regulatory officials to determine whether their sludge quality is appropriate for land application. Please note that New Brunswick requires additional treatment for the reduction of pathogens in order for sludge to be acceptable for use on land. Therefore, this Appendix is not applicable in New Brunswick.

D3. Biosolids Quality Criteria

D3.1. General

Biosolids quality is determined by the pathogen and metal content and is dependent on the wastewater characteristics and the type of treatment. Biosolids acceptable for land application and/or storage fall into one of three categories, depending on the metal and pathogen content: Exceptional Quality (EQ), Class A, or Class B. There are no restrictions for land application of EQ Biosolids or biosolids regulated under the Canadian Fertilizer Act, and no Approval is required. Land application of Class A or Class B biosolids requires an Approval, and restrictions pertaining to the use of these products will apply.

D3.2. Metals

All biosolids contain variable amounts of metals, some of which are essential plant nutrients (micronutrients). When applied to soils in excessive amounts, metals may accumulate in soils. Soil loadings of metals must therefore be controlled in biosolids application. The metal concentration in biosolids intended for land application (EQ or Class A/Class B) must not exceed the Maximum Acceptable Metal Concentrations in Table G-1. Some jurisdictions may have more stringent guidelines for disposal of biosolids.

Table D.1 Maximum Acceptable Metal Concentrations in Biosolids (mg/kg of dry weight)

<table>
<thead>
<tr>
<th>Metal</th>
<th>Exceptional Quality</th>
<th>Class A/Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>41</td>
<td>75</td>
</tr>
<tr>
<td>Cadmium</td>
<td>39</td>
<td>85</td>
</tr>
<tr>
<td>Chromium</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>1500</td>
<td>4300</td>
</tr>
<tr>
<td>Mercury</td>
<td>17</td>
<td>57</td>
</tr>
</tbody>
</table>
Molybdenum

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>75</th>
</tr>
</thead>
</table>

Nickel

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>420</th>
</tr>
</thead>
</table>

Lead

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>840</th>
</tr>
</thead>
</table>

Selenium

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>100</th>
</tr>
</thead>
</table>

Zinc

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>7500</th>
</tr>
</thead>
</table>

D3.3. Sludge Stabilization

Only stabilized sewage sludge (biosolids) should be applied to land. Biosolids are defined as processed sludge in which the organic and bacterial contents of raw sludge are reduced to levels deemed necessary by the regulatory agency to reduce nuisance odours, pathogen concentration, vector attraction, and public health hazards.

Biosolids may be defined as stabilized if one of the following conditions can be met:

- Volatile solids in the sludge have been reduced to at least 50%* of total solids;

* Assume 80% volatile solids initially. Volatile solids in sewage sludge are reduced by at least 38% during treatment. Therefore: (80% - (80% x 38%)) = 50%

- The specific oxygen uptake rate (SOUR) of the sludge is less than 1.5 mg O2/h.g of total sludge on a dry weight basis corrected to 20°C. This test is only applicable to liquid aerobic biosolids withdrawn from an aerobic process.

- Sludge meets the high pH stabilization criteria described in section 11.7.3.

- Any process which produces sludge equivalent in quality to the above in terms of public health factors and odour potential may be accepted. Additional treatment would be required to further reduce pathogens when the sludge is to be spread on dairy pastures and other crops which are in the human food chain. Biosolids generators are responsible for the stabilization and verification of any biosolids intended for land application. Proponents must provide sufficient information acceptable to demonstrate that the biosolids have been effectively stabilized to meet pathogen reduction requirements.

D3.4. Pathogens

Pathogens are disease causing organisms, such as bacteria, viruses, and parasites that exist in all biosolids. The pathogen reduction requirements for each of the three categories of biosolids are listed in Table G-2.

Table D.2 Pathogen Reduction Requirements

<table>
<thead>
<tr>
<th>Exceptional Quality</th>
<th>Class A</th>
<th>Class B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecal Coliform: <1000 MPN*/g total solids (dry weight)</td>
<td>Fecal Coliform: <1000 MPN*/g total solids (dry weight)</td>
<td>Fecal Coliform: <2,000,000 MPN* per gram of total solids (dry weight)</td>
</tr>
<tr>
<td>OR</td>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>Salmonella: <3 MPN*/4g Total solids (dry weight)</td>
<td>Salmonella: <3 MPN*/4g Total solids (dry weight)</td>
<td></td>
</tr>
</tbody>
</table>

Note: *MPN (most probable number)
D3.5. Persistent Organic Chemicals
Sufficient information is not available to establish criteria of sludge spreading in regard to persistent organic chemicals, such as pesticides and polychlorinated biphenyls (PCB). However, if there is a known source in the sewer system service area which discharges or discharged in the past such chemicals, the sludge should be analyzed for such chemicals and the regulatory agency should be consulted for recommendations concerning sludge spreading.

D4. Site Selection
D4.1. General
By proper selection of the biosolid application site, the nuisance potential and public health hazard should be minimized. The following items should be considered and the regulatory agency should be consulted for specific limits:

- Land ownership information;
- Groundwater table and bedrock location;
- Location of dwellings, roads and public access;
- Location of wells, springs, creeks, streams and flood plains;
- Slope of land surface;
- Soil characteristics;
- Climatological information, including climate change projections;
- Land use plan; and
- Road weight restrictions.

D4.2. Site Location
The following restrictions should apply to the location of a proposed biosolid to land application site:

- The site should be remote from surface water courses. The minimum distance between the site and the high water mark of the surface water course should be determined by the land slope as follows:

<table>
<thead>
<tr>
<th>Maximum Sustained Slope</th>
<th>For Biosolid Application During May to November Inclusive</th>
<th>For Biosolid Application During December to April Inclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 3%</td>
<td>100 m</td>
<td>360 m</td>
</tr>
<tr>
<td>3 to 6%</td>
<td>125 m</td>
<td>No Biosolid to be Applied</td>
</tr>
<tr>
<td>6 to 8%</td>
<td>180 m</td>
<td>No Biosolid to be Applied</td>
</tr>
<tr>
<td>Greater than 8%</td>
<td>No Biosolid to be Applied unless special conditions exist</td>
<td>No Biosolid to be Applied</td>
</tr>
</tbody>
</table>

- The site should be located a minimum distance from certain physical features, as specified in the following table:

For groundwater separation distances See section G.2.3.

- No processed organic waste should be applied to the site during any period in which conditions are such that surface runoff is likely to occur taking into account land slope, soil permeability and the climatic conditions of the area;

Appendices
Table D.4 - Minimum Distance to Physical Features

<table>
<thead>
<tr>
<th>Type of Feature</th>
<th>Minimum Setback Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public Wells</td>
<td>150 m **</td>
</tr>
<tr>
<td>Private Wells</td>
<td>90 m **</td>
</tr>
<tr>
<td>Property Line</td>
<td>10 m *</td>
</tr>
<tr>
<td>Bedrock Outcrops</td>
<td>10 m *</td>
</tr>
<tr>
<td>Dwellings</td>
<td>90 m **</td>
</tr>
<tr>
<td>Institutional Buildings (i.e. schools and hospitals)</td>
<td>200 m **</td>
</tr>
<tr>
<td>Commercial Buildings</td>
<td>90 m</td>
</tr>
<tr>
<td>Uninhabited Buildings</td>
<td>30 m</td>
</tr>
<tr>
<td>Public Areas (i.e. parks and playgrounds)</td>
<td>90 m</td>
</tr>
<tr>
<td>Perennial Water Bodies & Watercourses</td>
<td>90 m</td>
</tr>
<tr>
<td>Intermittent Water Bodies & Watercourses</td>
<td>60 m</td>
</tr>
<tr>
<td>Swales and Man-Made Drainage Ditches</td>
<td>15 m</td>
</tr>
<tr>
<td>Primary & Secondary Roads</td>
<td>30 m *</td>
</tr>
<tr>
<td>Unimproved Dirt Roads</td>
<td>10 m *</td>
</tr>
</tbody>
</table>

NOTE:
- * 100 m setback required for spray irrigation areas
- ** 300 m setback required for storage lagoons and spray irrigation areas

- Berms and dykes of low permeability should be constructed on the site where necessary to isolate the site and effectively prevent the egress of contaminants.
- No sewage sludge handling facility should be located on a flood plain, an area which is inundated by a flood that has a 1% or greater change in recurring in any year, or a flood of a magnitude equaled or exceeded once in 100 years on the average. Additional controls are required when biosolids are applied in flood risk areas. A flood risk area is a flat or gently sloping area beside a watercourse which may be subjected to flooding. The land application of both Class A and Class B biosolids in a flood risk area, which may experience flooding once in 20 years, must not occur before the risk of flood has passed, any flood waters have returned to their normal level, and the soil is adequately drained to support application equipment. Class A and Class B biosolids applied to land in flood risk areas must be directly injected into the soil or surface applied followed by incorporation (within 24 hours of spreading). The storage of Class A or Class B biosolids is not permitted in a flood risk area which may experience flooding once in 100 years.
- No sewage sludge handling facility should be installed within the area of any municipal watershed unless permission is granted by the regulatory agency having jurisdiction.
- A sewage sludge handling facility should not be located over land areas with a seasonal high water table at less than 450 mm below the ground surface, or with bedrock at less than 900 mm.

D4.3. Land Characteristics

The following restrictions should apply to the land characteristics of a proposed sludge to land application site:

- The land slope and soil permeability will determine the time of year that sludge may be applied.

<table>
<thead>
<tr>
<th>Maximum Sustained Slope</th>
<th>Soil Permeability</th>
<th>Allowable Duration of Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 3%</td>
<td>Any</td>
<td>12 mo./yr.</td>
</tr>
</tbody>
</table>
3 to 6%
Rapid to moderately rapid
(>5x10^{-5} to 8x10^{-6} m/s)
7 mo./yr. (May to November)

6 to 8%
Rapid to moderately rapid
(>5x10^{-5} to 8x10^{-6} m/s)
7 mo./yr. (May to November)

Greater than 8%
Any
No sludge applications unless warranted by special conditions

- The ground water table during sludge application should be not less than 1 m from the surface for soils with moderate to slow permeability. For soils with rapid to moderately rapid permeability the groundwater table should be not less than 1.5 m from the surface; and
- Where sludge application is carried out by tank truck, untiled land should be given preference to tiled land. Where tiled land is used the sludge hauling contractor should request instructions from the landowner, with regards to minimizing the possibility of damage to the tile system.

D4.4. Minimum pH
No biosolid should be applied on land if the soil pH is less than 6.0 at the time the biosolid is applied. Soils intended for biosolids application must have a pH between 6.0 and 8.0 to minimize metal leaching. Alkaline stabilized sludges may be applied to soils of lower pH, when they raise the soil pH to at least 6.0. The soil pH should be maintained between 6.0 and 8.0 for at least two years following the end of biosolids application.

D4.5. Land Use Restrictions and Waiting Periods
Sludge should not be applied to land which is used for growing food crops to be eaten raw, such as leafed vegetables and root crops.

Land on which Class B biosolids have been applied must adhere to the waiting periods identified in Table G-6. Class A and Class B biosolids are not permitted for use on residential lawns or gardens.

Table D.6: Minimum Waiting Periods

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Waiting Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasture</td>
<td>Not in the same calendar year</td>
</tr>
<tr>
<td>Forage</td>
<td>2 months before harvest</td>
</tr>
<tr>
<td>Livestock Feed</td>
<td>2 months before harvest</td>
</tr>
<tr>
<td>Food crops (edible parts below soil surface)</td>
<td>38 months before harvest</td>
</tr>
<tr>
<td>Food crops (edible parts above soil surface)</td>
<td>18 months before harvest</td>
</tr>
<tr>
<td>Commercial sod</td>
<td>12 months before harvest</td>
</tr>
</tbody>
</table>

Application sites where Class A and Class B biosolids have been applied should have required appropriate signage to identify the site as having received biosolids. Signs must be placed at all four corners of the application site as well as on each access road or path to the site. For Class B biosolids signs must remain in place for 38 months following the most recent application. Application sites where Class A biosolids have been applied, temporary signage (2 months) is required. Typical signage should include the following wording:
The signage must be maintained so that it remains in place and can be easily read for the required time period.

D5. Application Rate and Methodology

D5.1. Nutrient and Land Management Plans

Land Application of biosolids, when pertaining to agricultural land, should follow a Nutrient Management Plan (NMP) or, when pertaining to land other than that used for agricultural purposes, i.e. reclamation sites, a Land Application Plan (LAP).

NMPs should be prepared by Nutrient Management Planners and should outline crop requirements and biosolids parameters. The NMP should determine the biosolids application rate based on the agronomic rate. Biosolids should be applied as close to the time of maximum nutrient uptake of crops as feasible. The application rate should ensure that metal concentrations in soils do not exceed the limits specified in Table G-8.

LAPs should be prepared by a professional engineer or agrologist. The LAP should outline crop/vegetation requirements and biosolids parameters, and should determine the biosolids application rate based on nutrient and organic matter requirements. The rate of application should ensure that the appropriate amount of nutrients is applied to the soil in order to prevent groundwater contamination. The application rate should ensure that metal concentrations in soils do not exceed the limits specified in G-8.

D5.2. Acceptable Application Methods

With the exception of flood risk areas, Class A biosolids may be land applied by surface spreading as a top dressing or through incorporation, or by injection below the surface of the soil or as defined by the regulatory agency having jurisdictions. Class B biosolids may be surface spread followed by incorporation, or may be injected below the surface of the soil. For Class B biosolids, incorporation must take place within 24 hours of spreading.

For Class A and Class B biosolids, land application is not permitted when the ground is frozen, snow covered, or saturated. Biosolids must not be applied to land during or immediately following heavy rains or when heavy precipitation is forecasted, which may adversely affect the environment, through surface water run-off, and/or the ability to effectively spread and incorporate the biosolids on the field(s).

D5.3. Additive Metal Loading Restrictions

Unrestricted addition of metals to agricultural soils will result in both elevated metal content of the crops and plant toxicity. The following restrictions (with a built in safety factor) are designed to control this potential problem.

The following table lists criteria for the metal content in soils:

<table>
<thead>
<tr>
<th>Metal</th>
<th>Maximum Acceptable Metal Addition to Soil (Kg/Ha)</th>
<th>Maximum Acceptable Metal Content in Sludged Soils (μG/G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

Table D-8– Criteria for Metal Content in Soils

Appendices
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Co</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Cr</td>
<td>210</td>
<td>120</td>
</tr>
<tr>
<td>Cu</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>Hg</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Mo</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ni</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Pb</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>Se</td>
<td>2.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Zn</td>
<td>330</td>
<td>220</td>
</tr>
</tbody>
</table>

D6. **Sludge Application on Forested Land**
Disposal of sludge on forested land is considerably less hazardous than on cropland in terms of heavy metal toxicity unless the land is to be converted to cropland. For the allowable sludge loading the regulatory agency should be consulted.

D7. **Management of Spreading Operation**

D7.1. **Hauling Equipment**
The sludge hauling equipment should be designed to prevent spillage, odour and other public nuisance.

D7.2. **Valve Control**
The spreading tank truck should be provided with a control so that the discharge valve can be opened and closed by the driver while the vehicle is in motion. The spreading valve should be of the "fail-safe" type (i.e., self-closing) or an additional manual stand-by valve should be employed to prevent uncontrolled spreading or spillage.

D7.3. **Sludge Storage**
Sufficient sludge storage capacity should be provided for periods of inclement weather and equipment failure. The storage facilities should be designed, located and operated so as to avoid nuisance conditions. See Section 11.5.2 for more information regarding sludge storage.

D7.4. **Spreading methods**
The selection of spreading methods depends on the sludge characteristics, environmental factors and others. When control of odour nuisance and runoff is required, immediate incorporation of sludge after spreading or subsurface injection should be considered. When such a method is utilized, an adjustment in the reduced rate of ammonia loss into the atmosphere should be considered in the computation for nitrogen balance.

The sludge should be spread uniformly over the surface when tank truck spreading, ridge and furrow irrigation or other methods are used. Sewage sludge application should not be made during or immediately after rainfall.

Proposals for subsurface application of sludge should include for review a description of the equipment program for application.

Spray systems, except for downward directed types, will not ordinarily be approved.
D7.5. Monitoring Reporting, and Record Keeping

The requirements of the regulatory agency on the monitoring, reporting, and record keeping of the biosolids spreading operation should be followed. As a minimum, the producer of sludge should regularly collect and record information on the biosolids and soil characteristics and the volume of biosolids spread on a particular site.

D8. Biosolids Storage

D8.1. Biosolids Storage

The storage of biosolids may be required at times when land application is not possible and sufficient storage should be available to retain biosolids during these circumstances. The storage of Class A or Class B biosolids at land application sites must be approved in writing by the regulatory authority.

Class A and Class B biosolids with a minimum solids content of 20% may be stockpiled, or stored temporarily, at the application site prior to land applications, provided that the biosolids are intended for use at that location. Biosolids can be stockpiled without an impermeable surface for up to one week at the application site prior to land application, unless otherwise approved in writing by the regulatory authority. Stockpiled biosolids must be fully covered with an impermeable material, such as a tarp. Stockpiles must be located to minimize contact with surface water run-off and to prevent infiltration of precipitation and the generation of leachate. Class A and Class B biosolids with a minimum solids content of 20% may be stored for more than one week on top of an impermeable surface such as a concrete pad or clay liner at the application site prior to land application. The impermeable surface should have curbed sidewalls or berms on all sides constructed of the same material. Clay liners should have a minimum thickness of 0.5 metres and an in-situ coefficient of permeability of 1.3×10^{-6} cm/s. Such biosolids storage areas should be fully covered with an impermeable material, such as a tarp. Stockpiled biosolids should be fully covered with an impermeable material, such as a tarp. In addition, such storage areas must be located to minimize contact with surface water run-off and to prevent infiltration of precipitation and the generation of leachate.

The storage of Class A and Class B biosolids with a solids content of less than 20% must be in lagoons only. Storage lagoons must be designed by a professional engineer. Biosolids may be stored temporarily (storage of less than 72 hours) in a tank approved by the regulatory authority on land application sites.

D8.2. Volume

Rational calculations justifying the number of days of storage to be provided should be submitted and should be based on the total sludge handling and disposal system. Sludge production values for stabilization processes should be justified in the basis of design. If the land application method of sludge disposal is the only means of disposal utilized at a treatment plant, storage should be provided based on considerations including at least the following items:

- Inclement weather effects on access to the application land;
- Temperatures including frozen ground and stored sludge cake conditions;
- Haul road restrictions including spring thawing conditions;
- Area seasonal rainfall patterns;
- Cropping practices on available land;
- Potential for increased sludge volumes from industrial sources during the design life of the plant; and
- Available area for expanding sludge storage.
- Climate change parameters affecting any of the above items.

A minimum range of 120 to 180 days storage should be provided for the design life of the plant unless a different period is approved by the regulatory agency.

Appendices
References

6. Atlantic Canada Voluntary Certification Program.

9. Canadian Council of Ministers of the Environment, “Environmental Risk-Based Approaches for Managing Municipal Wastewater Effluent (MWWE)”.

10. Canadian Environmental Quality Guidelines, Canadian Council of Minister of the Environment, 2005

18. Feurstein, Donald L., "Predesign Surveys and Monitoring of Waste Disposal Systems".
25. IOWA Wastewater Facilities Design Standards
34. Nova Scotia Department of the Environment, "Interim Report - Guidelines for the Handling and Disposal of Sewage Sludge"

Appendices
51. USEPA, "Process Design Manual for Sludge Treatment and Disposal".
52. USEPA, "Technical Guidance Manual for Providing Waste Load Allocations - Book IV Lakes and Impoundments - Chapter 1, 2, and 3".
53. USEPA, "Process Design Manual - Wastewater Treatment Facilities for Sewered Small Communities".
54. USEPA, “Manual – Wastewater Treatment/Disposal for Small Communities”.
66. USEPA, “Onsite Wastewater Treatment Systems, Technology Fact Sheet 11, Recirculating Sand/Media Filter”.